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The challenge of correlations

• Correlated dynamics is crucial in many phenomena in condensed matter physics

• A common approximation, the mean field approximation (a particle in the 
average field of the other particles), is often insufficient

• Computer simulation allows us to model many-particle systems “almost” 
exactly

• Here I will focus on two examples: (a) the dielectric constant of water from first 
principles, (b) the critical coupling in the 2d Ising model



The RT static dielectric constant of water is ~80: why? 

Reproduced from L. Pauling, General 
Chemistry (1970)

Isotope effects on static equilibrium effects indicate that 
quantum fluctuations on the atomic motions cannot be 
entirely neglected

M is the electric dipole moment per (super)cell, periodic boundary conditions 
are assumed. This formula neglects the pure electronic contribution (       ) but 
the error is very small (                        ).



Phenomenological theory (Onsager, Kirkwood, etc.)

M µ=å
! !

In the phenomenological theory µ and KG
parameters. They are not directly accessible from experiment. 
Can they be derived from first-principles electronic structure 
theory? 

are  independent 

µ is the average molecular dipole

KG is the correlation factor 



Water molecules: bond and lone pairs

Maximally Localized 
Wannier Functions (Boys 
Orbitals) in H2O:  a polar 
molecule 

Hydrogen 
bond 
between 
two 
molecules 
in the 
water 
dimer

Local tetrahedral order in 
condensed phase. 
Donors (D) and Acceptors 
(A)
Bernal-Fowler ice rule: 2D 
+ 2A   
Proton disorder



Effects of the hydrogen bonds: alignment and 
polarization

Alignment is consequence of the ice rules 

These effects are usually referred to as cooperative effects of 
the H bonds



Can we predict quantitatively the dielectric constant by molecular 
dynamics simulations that include nuclear quantum fluctuations ?

Quantum Statistical Mechanics 
can be mapped onto Classical 
Mechanics via discretized 
Feynman paths Left: a snapshot of a 

Path Integral ab-initio 
MD simulation of liquid 
water at RT showing 
oxygens (red), 
hydrogens (white) and 
electron MLW centers 
(blue) 



Structural predictions from PI-AIMD (NpT) simulations

Equilibrium density (g/cm3):

Liquid water (300K): ~1.01  (expt: 1.00)

These are computationally very expensive calculations: they required 
months on a supercomputer. Yet they are too short to converge the 
calculation of the dielectric constant. This difficulty can be surmounted 
with modern machine learning techniques  



Deep (Neural Network) Potentials

DPMD PI calculations give a dielectric constant of ~82 for 
liquid water at STP  



A Feynman quote (predating the modern era of 
computer simulations):

“Don’t forget that the reason a physicist can really calculate from first principles 
is that he chooses only simple problems. He never solves a problem with 42 or 
even 6 electrons in it. So far, he has been able to calculate reasonably accurately 
only the hydrogen atom and the helium atom”  
R.P. Feynman, The Feynman lectures on physics, 3rd printing (1969)



Diverging correlation length at the critical point 

The liquid-vapor transition in a fluid



Scale transformations and coarse graining

Ising model:  H σ( ) = −K σ iσ j
ij
∑       (K = J kBT > 0)

′σ = τ σ( )   ′N = N
bd

    ′ξ = ξ
b

   Block spins

K > Kc  T < Tc( ) K = Kc  T = Tc( ) K < Kc  T > Tc( )





Onsager (exact) result: Kc = 0.44069

Yantao (numerical) result: Kc = 0.4407 +/- 0.00001

Why shall we bother to do the simulation if we already know the exact solution?

Well, the 2d Ising model in absence of external field is one of the very few interacting 
models of which we know the analytical solution. For example, already in 3d we have 
to resort to numerical solution for a model as simple as Ising. Numerical solutions are 
very useful in the context of many different models  



Some final comments

• 2 examples of numerical simulation: (a) a very realistic  model; (b) a 
very simple model

• Often brute force simulations made possible by the sheer power of 
modern computers are often not enough

• Physical intuition and theory are necessary to make simulations 
possible and to gain new insight from them 


