
GENERAL INFORMATION
Online Part

Guidelines

Student teams will have a total of one week to complete the exam from start to finish. We recommend
that teams set aside approximately 20 hours to allow enough time for successful completion. All teams
are required to submit their response with a cover page listing the title of their work, the date, and the
information provided during registration. Additionally, it should include the signatures of all contestants on
that team. Each submitted page should also have on it the team ID number and problem number. All other
formatting decisions are delegated to the teams themselves, with no one style favored over another. While
points will not be deducted for written work, we suggest that teams use a typesetting language (e.g., LATEX)
or a word-processing program (e.g., Microsoft Word/Pages) for convenience. There will be three types of
problems on the online exam, with about twenty questions in total:

• Introductory: These questions will introduce students to the research topic. No prior knowledge is
assumed.

• Intermediate: Questions that will bring students up to date with current physics research that assume
knowledge of the introductory material and questions.

• Research: As the most difficult questions on the exam, research questions will test students’ knowledge
and creativity in manipulating and interpreting data from current research.

Collaboration Policy

Students participating in the competition may only correspond with other members of their team. No
other correspondence is allowed, including: mentors, teachers, professors, and other students. While teams
are allowed to use a plethora of online resources, participating students are barred from posting content or
asking questions related to the exam. As repeated below, teams are also welcome to utilize the Piazza page at
http://piazza.com/princeton_university_physics_competition/spring2015/pupc and ask questions
in case something is unclear in the assignment.

Resources

Barring violating the collaboration policy, students have access to the following types of resources:

• Online: Teams may use any information they find useful on the Internet. However, under no circum-
stances may they engage in active interactions such as posting content or asking questions regarding
the exam.

• Piazza page: Teams are encouraged to create an account in Piazza and register in the class at the
following URL:

http://piazza.com/princeton_university_physics_competition/spring2015/pupc

The access code is: firstedition

This way, you will be able to ask questions if you’d like to clarify something.
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• Published Materials: Teams may take advantage of any published material (print/online)

• Computational: Teams may use any computational resources they might find helpful, such as Wol-
fram Alpha/Mathematica, Matlab, Excel, or lower level programming languages (C++, Java, Python,
etc).

Citations

All student submissions with outside material must include numbered citations. We do not prefer any
style of citation in particular. Students may find the following guide useful in learning when to cite sourced
material:

http://www.princeton.edu/pr/pub/integrity/pages/cite/

Submission

Teams must submit their Online Part solutions by e-mailing pupc.submit@gmail.com in accordance
with the Test Rules before 2 PM Eastern Time (UTC-5) on Saturday, November 22, 2014. Teams will not
be able to submit their solutions to the Online Part at any later time. Regardless of internal formatting,
solutions should be submitted as a single PDF document with the “.pdf” extension. The e-mail must
contain your team ID in the Subject field. Only one person per team, identified as the “team manager”
during registration, should send this e-mail. (Team managers will receive their team IDs via e-mail after
the Online Part is released, by Sunday, November 16.) Each submitted page should also have on it the
team ID number and problem number, and the front page should include the following handwritten pledge
(”I pledge my Honor that this assignment represents my own work in accordance with regulations set forth
herein”) followed by the signatures of all contestants in that team. Any discrepancies will be dealt with by
the current Director of PUPC.

Sponsors

We are very thankful for support from our University and corporate sponsors!
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PUPC 2014: Condensed Matter Online Part

If you choose to submit your solutions for the Condensed Matter part, you are NOT required to submit the
Cosmology part!

This part will contain background material in crystal structure, quantum theory, resistivity and conduc-
tivity, superconductivity, the process underpinning the growing field of topological insulators, and, finally,
Kondo insulators, a subtopic that is at the forefront of groundbreaking research in present day condensed
matter physics.

Each section of the background material is followed by several conceptual and/or applied questions that
you are expected to answer in any order you choose (but the material is structured in a way that would lead
you through the assignment sequence logically).

Good luck!

Condensed matter physics deals with the study of systems made up of condensed phases of matter, and
a great deal of research focuses on analyzing such systems on a micro-level. The behavior of these systems
is explored using theories from solid state physics, quantum mechanics, electrodynamics, and statistical
mechanics. In this part, you will explore some important concepts one encounters in condensed matter.

1 Crystal Structure background

Crystal lattices Condensed matter is largely concerned with the study of crystalline materials, or those
with a regular, repeating structure. One reason is that crystals are easier to study than irregular matter.
More importantly, most real solid materials are crystalline, including quartz, salt, and metals.

The structure of a crystal can be described in terms of a crystal lattice (or Bravais lattice), which specifies
the periodic geometry in which the crystal units (e.g. atoms) are arranged. Two equivalent definitions of a
Bravais lattice are:

1. A Bravais lattice is an infinite array of discrete points with an arrangement and orientation that appears
exactly the same, from whichever of the points the array is viewed

2. A (three-dimensional) Bravais lattice consists of all points with position vectors R of the form:

R = n1a1 + n2a2 + n3a3, (1)

where the ni are integers.

The vectors ai, or primitive vectors, are said to span the lattice. Any point in the lattice can be reached
from any other point by a sum of primitive vectors. It should be noted that the choice of primitive vectors
is not unique; in fact, there are an infinite number of equivalent choices. A picture of a Bravais lattice with
one choice of primitive vectors is provided in Figure 1.

A Bravais lattice is infinite by definition. Although real crystals are of course finite, they contain a very
large number of points. The points in the center are so far from the surface that they are generally unaffected
by the surface, so they behave as if in an infinite solid.

One important Bravais lattice, the body-centerd cubic (BCC) lattice, is shown in Figure 2. It can be
formed by starting with a simple cubic lattice (whose points we call A) and adding a point in the center of
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Figure 1: A 2D Bravais lattice with one set of possible primitive vectors shown.

Figure 2: A body-centered cubic (BCC) lattice.

each cube (which we call B). The B points may appear to be fundamentally different from the A points, but
they are not. To see this, note that the B points can be connected to form cubes, where now the A points
lie in the centers. Thus, each point has identical surroundings, satisfying definition 1 of a Bravais lattice.

This implies that the BCC lattice can be described by a set of primitive vectors. One choice is:

a1 = ax̂, a2 = aŷ, a3 =
a

2
(x̂ + ŷ + ẑ) (2)

A more symmetric choice is:

a1 =
a

2
(ŷ + ẑ − x̂), a2 =

a

2
(ẑ + x̂− ŷ), a3 =

a

2
(x̂ + ŷ − ẑ) (3)

In Problem 1.1, you will show that these choices are equivalent.

2 Reciprocal Lattices

The reciprocal lattice is a fundamental concept in condensed matter physics. It is useful for analyz-
ing many phenomena involving functions in a periodic lattice, including crystal diffraction and electronic
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wavefunctions in a crystal.
Consider a Bravais lattice with lattice vectors R. Also consider a plane wave, or a wave propagating in

one direction, which can in general be represented by the formula eik·r. (If this notation is not familiar, you
will need to look up complex exponentials). A plane wave is defined by the wavevector k, which points in
the direction of wave propagation and has magnitude 2π

λ , where λ is the wavelength.
We say that a specific wavevector k has the periodicity of the lattice if, for every lattice vector R, the

wave is identical at two points separated by R. Such a wavevector is a reciprocal lattice vector, and we give
it the symbol K. Mathematically:

eiK·(r+R) = eiK·r. (4)

Factoring out the eiK·r, we say that a wavevector is a reciprocal lattice vector K if and only if

eiK·R = 1 (5)

for each R in the Bravais lattice.
It turns out that the reciprocal lattice is itself a Bravais lattice, and thus there are an infinite number

of choices of primitive lattice vectors. One easy choice is the following, in which we construct the reciprocal
lattice vectors from the primitive vectors a1, a2, and a3. Then we set

b1 = 2π
a2 × a3

a1 · (a2 × a3)
(6)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
(7)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
(8)

To show that these are primitive vectors for the reciprocal lattice, we must show that any wavevector of the
form

K = k1b1 + k2b2 + k3b3, (9)

where the ki are integers, is indeed a reciprocal lattice vector, i.e. it satisfies Equation 5. First, it can be
shown that

bi · aj = 2πδij (10)

where δij , the Kronecker delta symbol, is simply

δij = 0, i 6= j (11)

δij = 1, i = j (12)

Then for any R = n1a1 + n2a2 + n3a3, we have

k ·R = 2π(k1n1 + k2n2 + k3n3) (13)

eik·R = ei2π(k1n1+k2n2+k3n3) (14)

eik·R = 1 (15)

The last step is true because any complex exponential eix = 1, if x is 2π times an integer.

2.1 Problem: Primitive vectors in FCC lattice

Derive a set of primitive vectors for the face-centered cubic lattice, pictured in Figure 2. More symmetrical
choices are preferred. Then compute a set of reciprocal lattice vectors for the lattice.

2.2 Problem: Density of lattice points

A “primitive cell” is a volume of space that, when translated through all of the primitive vectors in a
lattice, fills all of space without overlapping or leaving empty space. The choice is not unique, but any
primitive cell contains exactly 1 lattice point (which may be divided, for example, into part of a lattice point
at each corner). Demonstrate that, in a given family of parallel lattice planes, the density per unit area in
a plane is d/v, where v is the volume of a primitive cell and d is the spacing between neighboring planes in
the family.
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Figure 3: A face-centered cubic, or FCC lattice. This can be created from a simple cubic lattice by adding
a point onto the center of each face, shared between two adjacent cubes.

2.3 Problem: BCC lattice

Show that any reciprocal lattice vector is perpendicular to each lattice plane in a given family of parallel
planes. Using this fact, calculate the greatest density per area in a single lattice plane in a BCC lattice.

3 Quantum Mechanics background

The Schrödinger Equation Quantum mechanics is a fundamentally probabilistic way to understand
physics at atomic and subatomic length scales. Much of classical intuition breaks down at this level. Richard
Feynman quipped that quantum mechanics addresses “nature as She is -absurd”.

The fundamental equation of quantum mechanics (the F = ma equivalent for quantum mechanics) is the
Schrödinger equation:

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ VΨ

where ~ (pronounced “h-bar”) represents the reduced planck constant, 6.582eV ∗ s
Solving this equation gives Ψ(x, t) , the wavefunctions. Wavefunctions are used to describe probabilitically

where a particle is likely to be at a given time.
This is known as the Statistical Interpretation of the wavefunction, that is:∫ b

a

|Ψ(x, t)|2 dx = probability of finding the particle between a and b, at time t

The Harmonic Oscillator The classical paradigm of the harmonic oscilator is a mass m attahced to a
spring with spring contstant k. The motion is given by Hooke’s law:

F = m
d2x

dt2
= −kx

The solution to which is:

x(t) = Asin(ωt) +Bcos(ωt)

where

ω =

√
k

m

is the angular frequency of the oscillation. The potential energy is parabolic:
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V (x) =
1

2
kx2

In fact, nearly any oscillatory motion is approximately simple harmonic and therefore has a parabolic
potential, as long as the amplitude remains small.

In quantum mechanics, we want to solve the Schrödinger equation for the potential

V (x) =
1

2
mω2x2

for our purposes, the derivation itself is beyond the scope of this problem. After solving, we arrive at an
equation for the ground state (that is, the lowest energy wavefunction which is a solution) wavefunction:

Ψ(x) = (
mω

π~
)1/4e−(mω

2~ x
2)

More importantly, the allowed energy of the groundstate is

E =
1

2
~ω

Because energy is quantized in quantum machincs, there are distinct allowed energies, each for it’s
corresponding allowed wavefunction. For the nth wavefunction, the corresponding energy is given by

En = (n+
1

2
)~ω

3.1 Problem: Probability of Locating a Particle

What is the probability of finding a particle (which is in the ground state of the harmonic oscillator) out-
side of the classically allowed region? The classically allowed region goes from −

√
2E/mω2 to +

√
2E/mω2.

Why is this region classically allowed? Why may the particle be found outside this region?
Note: some material in this section was derived from David Griffith’s Introduction to Quantum Mechanics

2nd ed, Pearson (2006).

4 Energy Considerations

Now that you are familiarized with both lattice structure from Part 1 and the paradigm of the harmonic
oscillator from Part 2, let’s work with understanding energies in more depth.

4.1 Problem: Density of States

1. In virtually any condensed matter system the density of states (DOS) is very important. It represents
how many states are at a given energy and is defined such that D(E)δE is the number of states between
energy levels E and E + δE. In order to get a handle on this subtopic, please familiarize yourselves with
this concept by referencing outside literature (we recommend textbook authors such as Kittel, Ashcroft and
Mermin, Ibach and Luth, but it is described in various sources) and derive the density of states (as a function
of energy) for:

1a. one-dimensional electron gas (line in x-direction),
1b. two-dimensional electron gas (plane in directions x and y), and
1c. three-dimensional electron gas (volume in directions x, y, and z).
In each of the three cases, start with the single-particle energy expression and the wave vector. Hint: for

the one-dimensional case the single-particle energy is E0 = (~kx)2
2m and the wave vector is kx = 2π

L nx, where
L
2π is the number of states per unit wave vector. In each subsequent dimension you will need to factor in
momentum k in all proper direction(s).

You may be surprised to find out that for each dimension the density of states is proportional to different
powers of energy!
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2. In each of the above three cases, please create a graph (either by hand, or, preferably, using your
favorite computational software that you are familiar with, if any), plotting the density of states vs. energy
in the energy range 0 eV to 10 eV. To do this you will need to look up numerical values of Planck constant
~ in m2kg/s and the mass of the electron (in kg). Please label your graphs. [Note: the plots do not have to
be completely to scale; the most important part is to observe the behavior of the density of states for each
of the three cases as a function of energy.]

4.2 Problem: Phenomenon on Lattice

Feel free to imagine yourselves as ”micro-level” observers of the following interesting phenomenon. You
encounter a two-dimensional lattice consisting of N ions (of mass M) in a square array with lattice spacing
a. At temperature T, the lattice energy is expressed as a sum over all phonon modes:

U(T ) = 3

n∑
i=1

[nk(T ) +
1

2
]hω(k)

with nk(T) = 1
ehω(k)/kT−1

, which is the Bose-Einstein distribution. (A phonon describes the vibrational

motion of a lattice, and you may wish to look up this concept in more depth in external sources.)
a. Using the Debye approximation ω(k) = c |k| (with c being a constant), express the Debye wave vector

kD in terms of a, N , c, and ω. The two-dimensional density of states (re:previous problem) has the form

D(w) = βw

Express β (hint: it is already encompassed in the expression for the Debye wave vector you just derived).
b. Starting from the above expression for U(T), please show that at high T (much greater than ΩD) the

heat capacity approaches the Dulong-Petit value 3NkB . You can ignore the constant zero-level energy term
in U(T).

c. Show that at low T (much less than ΩD) the heat capacity behaves as αTn. Please derive α and n.
Again, you can ignore the constant zero-level energy term in U(T).

5 Resistivity and Conductivity

O P A Ba b c

j j

d

1. Consider a thin infinite plate with the thickness d and conductivity σ. At the point O, a current j is
injected. Determine the current density J at radius r on the surface of the plate!

You can assume that the d� r.
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2. We will also now pull out a current j from point P on the surface that is located as distance a from
point O. Determine the electric field at at point A that is located at radius r from point O on the
surface!

3. Calculate the potential difference VAB between point A and B as described by the figure!

4. From this point we will create a new notation of material resistivity between two points of the sheet
R12 by measuring the voltage difference between two other points V34 as,

R12,34 =
V34
I12

Calculate the resistivity of all possible combination of O, P , A, and B, and determine that all of them
satisfies the general relations of sheet resistivity namely,

R12,34 = R34,12 (16)

e−σπR12,34d + e−σπR23,41d = 1 (17)

Both of the equation 16 and 17 will hold for any general shape of conductor with thickness d.

6 Band Gap Theory background

Before delving into the topics of superconductivity and Kondo insulators, it is necessary to briefly intro-
duce the concept of band theory and ordinary insulators.

In semiconductors, the overlap between orbitals of ions located near one another generates narrow energy
levels called bands. The valence band is the highest occupied band, the conduction band is the lowest
unoccupied band, and these bands are separated by an energy gap called the band gap.

In real materials conduction occurs when there is either a presence of electrons in the conduction band or
the presence of holes (absence of electrons) in the valence band. When an electron is excited from the valence
band, it leaves a hole, and another electron in the valence band can fill this hole, leaving behind a hole of its
own. An n-type semiconductor is produced when impurities inside the material ionize and release electrons
into the conduction band, such that the net charge of the carriers is negative. A p-type semiconductor is
produced when the impurities capture electrons and release holes into the valence band, such that the net
charge of the carriers is positive.

In a conductor (metal) there is no energy gap as the two bands overlap. In insulators and semiconductors
there must be an input of energy for electrons to make transitions between the bands as the lowest energy in
the conduction band is higher than the highest energy in the valence band. Such energy input is impossible
in insulators and the valence band is filled to capacity while the conduction band is empty; there will be a
chemical potential between the two bands and the electron movement is prohibited. Please note that in this
discussion the concept of band gap structure was applied to the bulk of the material, not its surface.

7 Superconductivity background

Superconductivity is a phenomenon that occurs below a certain critical temperature TC in certain ma-
terials, at which point the electrical resistance vanishes. It is usually described in terms of BCS theory,
proposed in 1957, which postulates that superconductivity is caused by pairs of electrons called Cooper pairs
condensing into a less energetic boson-like state, so that with a decrease of temperature more pairs form until
all possible combinations are formed at the theoretical T = 0 K. The pairing thus contributes to an energy
gap between single and paired-electron states. Superconductivity can be analyzed in terms of differential
conductance across the materials interface, which is a typical transport measurement. Recently, a number
of studies have been conducted with the goal of inducing superconductivity in TIs by combining it with a
superconductor. One of the present-day directions in electrical transport research relies on the point-contact
method similar to the one introduced in the above questions in the Resistivity and Conductivity section.
For this section we suggest you familiarize yourselves further with two types of superconductors and the
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concept of Landau levels. [Note: this latter topic should not be hard because you were already introduced
to the quantum harmonic oscillator in the Resistivity and Conductivity section above, and the energy of a
system of non-interacting charged particles is found in the same way as that of a standard quantum harmonic
oscillator.]

Based on what you learned, please answer the following conceptual questions.

7.1 Problems: Superconductivity

1. Explain what happens to the electrons under a certain critical temperature, and what kind of inter-
action is felt that is broken up at a higher temperature (and why).

2. How is a type II superconductor different from a type I superconductor?
3. In your own words, please explain briefly what a Landau level represents.
4. What happens to the energy gap between the Landau levels with increasing magnetic field?

8 Topological insulators and photoemission spectroscopy

Topological insulators (TIs), a class of materials that have been first experimentally observed in crystals
only six years ago – here at Princeton, – act as electrical insulators in the bulk and as electrical conductors
at the surface. While you are encouraged to familiarize yourselves with the theory (we recommend the
paper entitled Colloquium: Topological Insulators by Hasan and Kane, 2010), we will not discuss them in
depth in this assignment. The so-called angle-resolved photoemission spectroscopy, or ARPES, is needed to
understand the properties of topological order in the three-dimensional (3D) TIs. This process consists of
bombarding the 3D TI sample with photons of a predetermined momentum and energy. By means of the
photoelectric effect, the sample absorbs the photons and emits electrons, which are then detected. The goal
of this process is to relate energy and momentum of the emitted electrons to ultimately understand band
dispersion of the sample.

8.1 Problem: Photoelectric effect

a. Please explain in your own words how the photoelectric effect works and calculate the maximum
kinetic energy of an ejected electron from the surface of a TI if the work function is 4.5 eV (a typical value
in recent experiments with laser-ARPES) and the frequency of the incident light ranges from 1 to 16 * 1014

Hz.
b. Please plot the values you found above and specify the condition for which the photoelectric effect

will occur. After you have done this, you may find pleasure in knowing that this process underpins all real
experiments performed at photoemission spectroscopy beam lines across the world at this precise moment!

9 Kondo Insulation background

Kondo insulators are materials with strongly correlated electrons that open up a narrow band gap (approx.
10 meV) at low temperatures, and whose chemical potential (otherwise known as the Fermi level) lies in the
gap. In contrast, in heavy fermions the chemical potential is located in the conduction band, as pictured in
Fig. 1a.

As shown in Fig. 1b, the band gap opens up at low temperatures because of hybridization of localized
electrons (in particular, f-electrons) with conduction electrons, which is called the Kondo effect. The Kondo
effect describes the scattering of conduction electrons in a metal due to magnetic impurities, leading to the
change in electrical resistivity with temperature.

Below is a typical temperature dependence of the resistivity that takes into account the Kondo effect:

ρ(T ) = ρ0 + aT 2 + cmln
µ
T + bT 5,

where ρ0 is the residual resistance, aT 2 is the contribution from the Fermi liquid properties, and bT 5

corresponds to lattice vibrations or phonon scattering (a, b and cm are constants).
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(a) Chemical potential in the conduction band in heavy
fermions.

(b) Localized (f) electrons hy-
bridize with conduction electrons,
opening up a band gap (at low tem-
peratures).

Figure 4: Drawings corresponding to the Kondo Insulation background

More simply, the resistivity from the Kondo contribution and the electron-phonon scattering can be given
by3:

ρ(T ) = aT 5 − bcln( T
TF

),

where aT 5 corresponds to the phonon scattering.
Using this information, please answer the following questions.

9.1 Problem: Minimum Resistivity

1. Please derive the temperature at which the minimum resistivity from the Kondo contribution is
observed (this should be a very quick calculation!).

Note: the expression you obtain above has been experimentally confirmed a number of times on alloys
such as Fe in Au. (See Kondo, J. Prog. Theor. Phys. 1964.)

2. Please make a plot of what you think the resistivity vs. temperature curves would look like in a
hypothetical alloy, including behavior below and above the temperature you found in the problem above.

3. You are presented with a set of known Mo-Nb alloys of various respective concentrations given in the
graph below. From this plot, what can you conclude about the alloys with a concentration of 0.2 and 0.4
molybdenum, in contrast to the behavior of the other four alloys, particularly the ones with Mo concentration
exceeding 0.7? Why do you think this is the case?
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Figure 5: Graph pertaining to Problem 9.1.3.
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