
GENERAL INFORMATION
Online Part

Guidelines

Student teams will have a total of one week to complete the exam from start to finish. We recommend
that teams set aside approximately 20+ hours to allow enough time for successful completion. All teams are
required to submit their response with a cover page listing the title of their work, the date, the signatures
of all contestants on that team, and the team ID number. All other formatting decisions are delegated to
the teams themselves, with no one style favored over another. While points will not be deducted for written
work, we suggest that teams use a typesetting language (e.g., LATEX) or a word-processing program (e.g.,
Microsoft Word/Pages) as unclear answer will not be graded. The packet is divided into smaller sections
that will guide participants in understanding the main topic.

Collaboration Policy

Students participating in the competition may only correspond with other members of their team. No
other correspondence is allowed, including: mentors, teachers, professors, and other students. While teams
are allowed to use a plethora of online resources, participating students are barred from posting content
or asking questions related to the exam. As repeated below, teams are also welcome to utilize the Piazza
page at http://piazza.com/princeton_university_physics_competition/fall2015/pupc2015 and ask
questions in case something is unclear in the assignment.

Resources

As long as they do not violate the collaboration policy, students have access to the following types of
resources:

• Online: Teams may use any information they find useful on the Internet. However, under no circum-
stances may they engage in active interactions such as posting content or asking questions regarding
the exam.

• Piazza page: Teams are encouraged to create an account in Piazza and register in the class at the
following URL:

http://piazza.com/princeton_university_physics_competition/fall2015/pupc2015

The access code is: pupc2015p

This way, you will be able to ask questions if you’d like to clarify something.

• Published Materials: Teams may take advantage of any published material, both printed and/or
online.

• Computational: Teams may use any computational resources they might find helpful, such as Wol-
fram Alpha/Mathematica, Matlab, Excel, or lower level programming languages (C++, Java, Python,
etc). For some parts of the problem, the use of computational resources is highly advised.
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Citations

All student submissions with outside material must include numbered citations. We do not prefer any
style of citation in particular. Students may find the following guide useful in learning when to cite sourced
material:

http://www.princeton.edu/pr/pub/integrity/pages/cite/

Submission

Teams must submit their Online Part solutions by e-mailing pupc.submit@gmail.com in accordance
with the Test Rules before 23:59 Eastern Time (UTC-5) on Sunday, November 15, 2015. Teams will not
be able to submit their solutions to the Online Part at any later time. Regardless of internal formatting,
solutions should be submitted as a single PDF document with the “.pdf” extension. The e-mail must
contain your team ID in the Subject field. Only one person per team, identified as the “team manager”
during registration, should send this e-mail. (Team managers will receive their team IDs via e-mail after the
Online Part is released, by Sunday, November 8.) Each submitted page should also have on it the team ID
number and problem number. Any discrepancies will be dealt with by the current Director of PUPC.

Sponsors

We are very thankful for support from our University and corporate sponsors!
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PUPC 2015: Online Part

Atomic Physics is one of the most studied topics in Physics. Beginning in the late 1800s, it has advanced
our understanding of the universe. From the discovery of the atom as the fundamental unit of matter to the
nuclear reactor, atomic physics has been growing exponentially for the last century. One of the most impor-
tant discoveries to date is the use of laser cooling to slow down atoms. The current record of atomic cooling
is on the order of pico-Kelvins, or 12 orders of magnitude less than a Kelvin. The method of laser cooling
has enabled us to observe many new phenomena. Research in Bose-Einstein condensation, spectroscopy, and
even quantum computers requires laser cooling.

Through this competition, students are introduced to various methods in atomic physics centered around
the concept of laser cooling. Students will derive concepts from both the semi-classical and quantum me-
chanical views of atomic theory. Most of the problems require the students to re-derive the given equations,
for these problems students are graded from the work shown in derivation steps. For some problems
that require visualization, students are expected to show clear scales on their graph. Problems that require
the use of a computational device will always be clearly indicated.

Each section of the background material is followed by several conceptual and/or applied questions that
you are expected to answer in any order you choose (while the material is structured in a way that would
lead you through the assignment sequence logically). All of the problems here should be able to be solved
using only mechanics and electromagnetism, while new concepts will always explained.

These problems cover Nobel prizes beginning with Zeeman in 1902 for the Zeeman Split, continuing with
Bohr in 1922 for the Bohr atomic model, Rabi for Rabi oscillations in 1944, Bloch for the optical Bloch
equation (and a great last name) in 1952, and Chu, Cohen-Tannoudji, and Phillips in 1997 for laser cooling.

These are very advanced topics, some of which are only taught in advanced undergraduate courses.
We expect very few teams to finish the entire packet. We expect that when students find concepts that
are unfamiliar, they will be resourceful and research topics using allowed resources that do not violate the
collaboration policy. Completing any one of the parts is a major accomplishment for a team, let alone
finishing all three parts.

Good luck!
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1 Introduction

1.1 Bohr Atom

In 1913 Bohr postulated that the atom can be viewed as a tiny positive charged nucleus, with the electron
circulating around it, similar to the earth rotating around the sun. We need to remember that circulating
charged material will radiate away its energy; thus, the electron will fall into a lower energy orbit. In his
postulate, Bohr suggest that the orbit follows a certain quantum mechanical pattern that we will discuss
here. In this section, we will determine what we mean when we say “excited” or “ground” state of an atom.

Consider an atom of hydrogen, consisting of a proton of mass mp and an electron of mass me, in a vacuum
and isolated from other atoms. In this problem, we will derive the spectrum of hydrogen in the semi-classical
limit.

1. Suppose the electron orbits the proton in a circular orbit of radius r. Write down the forces that the
electron experiences.

2. Write down the equations of motion for the system. Do not assume that mp � me.

3. In this classical derivation we can see that r can assume the value of any real number; thus, the
spectrum of the hydrogen atom should be continuous.

However in 1871 Angström measured 4 discrete spectra of Hydrogen:

Figure 1: Table of hydrogen spectrum observed by Angström

Bohr postulated in 1913 that the angular momentum of the electron is discrete and given by:

L = n~ (n = 1, 2, 3...) (1)

where ~ is the reduced Planck constant.

From this assumption, derive the possible energy levels of the electron.

4. From these discrete energy levels, derive the possible radial separations between the proton and the
electron r. Show that it will take the form of

r = RE
1

n2
(2)

where RE is a constant. Find RE in terms of fundamental constants.

5. From this derivation, we can arrive at the formula that was known before Bohr’s assumption, known
as the Rydberg formula. Remember that the energy of a photon with frequency f is Eph = hf . Show
that the possible spectra wavelengths λ can be given in the following form:

1

λ
= R

(
1

n2
f

− 1

n2
i

)
(3)

for some constant R, with nf , ni being positive integers. Find R in terms of fundamental constants.

6. From the Rydberg formula, find the pair nf , ni that corresponds to the wavelength λ that Angström
observed.
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1.2 Zeeman Effect

Before Bohr hypnotized his atomic theory, Dutch physicist Peter Zeeman observed different emission
spectra of sodium atoms due to variations in the magnetic field in 1896. For his observation, he was awarded
the 1902 Physics Nobel Prize together with Hendrik Lorentz. Initially, it was suspected that the variation
is due to the photon interacting with the magnetic field.1 In this section you will try to derive the weak
Zeeman effect for the orbital angular momentum using the Bohr atomic model.

1. Consider a charged ring with linear mass density λ, radius R, and charge Q that is rotating on its
normal axis with angular velocity ω. Write down the electromagnetic field at distance r with r � R
from the center of the ring!

2. Write down the electromagnetic field at a distance r of a magnetic dipole with magnetic moment m
located at the origin! We can imagine the magnetic dipole as two oppositely charged qm separated at
distance d, as in Figure 2 with m = qmd, each magnetic charge has field given by

B =
µ0

4π

qm
r2

Figure 2: Magnetic charge representation of magnetic dipole

From part 1 and 2 we can see that the electromagnetic field of both systems are identical in a certain limit.

3. Write down this limit!

4. In this limit, we can see that we can replace the magnetic moment m with a form constant multiplied
by the angular momentum (L) of the rotating ring, i.e.

m = κL (4)

Write down the expression of κ.

5. Do parts 1, 3, and 4 again for a system of a charged sphere with total charge Q, mass density ρ and
radius R rotating at angular velocity ω.

6. Comparing the value of κ for both the rotating ring and rotating ball, write down κ in terms of total
charge Q and another general variable unrelated to the shape of the object. This constant is known as
the gyromagnetic ratio.

We know that although magnetic fields cannot produce any work from the Lorentz force, the interaction
between two magnetic dipoles can produce some kinetic energy. In order to understand the potential energy
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Figure 3: One dimensional system of magnetic dipoles

of a magnetic dipole in a magnetic field, imagine a system drawn in Figure 3.

The system is constrained to move in one dimension while m1 is held stationary. The system is initially
at rest when the distance between dipoles is r0.

7. Write down the force ~F experienced by m2 as a function of their separation r.

8. Write down the kinetic energy U of m2 as a function of their separation r.

9. From the change in kinetic energy, derive the potential energy of the system in this configuration as a
function of their separation r.

10. Based on the previous parts, you should be able to write down the general potential energy formulation
of a magnetic dipole in a magnetic field. Write down the general expression of U .

11. Using the fact that ~F = −~∇U , write down the general expression for the force on a magnetic dipole.
Confirm that this agrees with the force that you obtained in the previous part!

1.3 Photon Collisions

We know from physical experiments that we can see light as both an electromagnetic wave and as a
particle. In this section, we will investigate this wave-particle duality by treating light as a particle, we can
see that it will exert an effective force on atoms due to the absorption and emission. Furthermore, in this
section we will also investigate the effect of an atom’s velocity on the atoms’ perceptions of incoming light,
generally known as the relativistic Doppler effect.

The momentum of a photon with wavelength λ is given by the de Broglie relation:

p =
h

λ
(5)

while at relativistic speed, the momentum of a particle with rest mass m is given by:

prel = γmβc (6)

where β = v
c and γ = 1√

1−β2
.

1”Zeeman effect”. Encyclopedia Britannica. Encyclopedia Britannica Online. Encyclopedia Britannica Inc., 2015. Web. 07
Nov. 2015 http://www.britannica.com/science/Zeeman-effect.
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1. Prove that the relativistic momentum will reduce to the classical momentum: prel ≈ pcl = mv for
v � c. For what range of v will the classical approximation for momentum differ from the actual,
relativistic momentum by 10%?

2. Suppose a photon with wavelength λ collides with an atom with rest mass m that is initially at rest.
The atom will absorb the photon and immediately emit it in a random direction. This process can be
described by the following collision:

Figure 4: Relativistic collision image for subsection 2

Using conservation of momentum and conservation of energy, derive the velocity v as a function of θ.

3. In this question we will introduce the concept of 4-momentum.

(a) Prove that, for a relativistic particle of rest mass m:

E2 − (~pc)2 = (mc2)2 (7)

where E = γmc2

(b) We can combine the particle energy E and momentum ~p by writing them into a single vector, the
4-momentum:

~P =

(
E

c
, ~p

)
=

(
E

c
, px, py, pz

)
(8)

with the norm of P defined as:

||~P ||2 =

(
E

c

)2

− p2
x − p2

y − p2
z (9)

Thus, ||~P ||2 = (mc2)2, which is the same in all reference frames. Therefore ||~P ||2 remains invariant
under Lorentz transformations.

Prove that you can recover energy and momentum conservation relations from the conservation
of 4-momentum:

4∑
i=1

~Pi(t) = Constant (10)

(c) Now solve part 2 using 4-momentum and verify that you arrive at the same answer as before.
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4. What is the minimum/maximum value of v?

5. What is the average value of v (taken over θ)?

We now know what the effect of absorption and spontaneous emission will be on each atom when we treat
the photon as a particle. However, we also want to know how the atom views the incoming photon.

6. The atom is moving with the velocity v toward the source of the photon that emits photon with angular
frequency ω. In its reference frame, the source is moving with velocity v towards the atom. Using
the time dilation relation given by ∆t = γ∆t′ design a gedankenexperiment to measure the relativistic
Doppler effect!

7. Show that in limit β � 1 you will find that the answer to the previous part reduces to the the non-
relativistic Doppler effect!

2 Atomic States

2.1 Illuminated Atoms

In this section we will consider the statistical aspect of atoms that are illuminated by lasers. We know
from the previous section (1.1) that the atom will have at least two possible states, the ground state and the
excited state. Throughout the rest of the problem, we will consider atoms with only two possible states, the
ground state, which we will denote with sub-index Xg, and the excited state, Xe. In general, as shown in
quantum mechanics, it’s logical to consider the fraction of atoms in either state, rather than the number of
atoms, as we can freely vary the total number of atoms.

In this section we will discuss the use of the semi-classical derivation to explain how the composition of
atoms changes due to the incoming photons.

Consider atoms with two energy levels. We denote |ce|2 to be the fraction of atoms in the excited state
and |cg|2 to be the fraction in the ground state, with

|ce|2 + |cg|2 = 1. (11)

For those who are familiar with quantum mechanics, the state of the atoms |ψ〉 is

|ψ〉 = ce |e〉+ cg |g〉 . (12)

In general, we have that ce, cg ∈ C, and |cj |2 = cjcj . Here r denotes the complex conjugate where,

r = (x+ iy)

= x− iy (x, y ∈ R)

1. Suppose we shine light on the atoms, such that the number of atoms in the excited state is given by
the differential equations

i~
dcg
dt

= ce(t)(~Ω cos(kz − ωlt))e−iωat (13)

i~
dce
dt

= cg(t)(~Ω cos(kz − ωlt))e+iωat, (14)

where ωl is the frequency corresponding to the laser frequency and ωa is the frequency corresponding
to the energy levels of the atoms. Ω corresponds to the interaction of the electron from each atom with
the electric field amplitude of the photon. Let us define δ ≡ ωl − ωa. In most experiments, we choose
the case where δ � ωe. Show that in this case the differential equations given above are reduced to

c̈g − iδċg +
Ω2

4
cg = 0 (15)

c̈e + iδċe +
Ω2

4
cg = 0 (16)
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2. Solve the separated differential equations in part 1 to get the amplitudes cg(t) and ce(t) as functions
of time, given the initial conditions:

cg(0) = 1, ce(0) = 0,

Verify that the amplitudes squared (which gives the probabilities) sum to 1. Furthermore, plot elec-
tronically (or sketch by hand) |ce|2 as a function of time for several values of δ:

(a) δ = 0

(b) δ = Ω

(c) δ =
√

3Ω

(d) δ = 2
√

2Ω

3. It is well known that light is nothing more than electromagnetic radiation. Similar to the Zeeman split
that we found in section 1.2, the varying electric field from the photon can introduce a split in the
energy level of the atom. This shift is known as the Stark shift and can be calculated by solving the
matrix equation:

i~
d

dt

(
c′e
c′g

)
=

~
2

(
2δ Ω
Ω 0

)(
c′e
c′g

)
For a certain value of the vector

c± =

(
c′e±
c′g±

)
,

where here c′g ≡ cg and c′e ≡ cee−iδt. It follows that the matrix equation reduces to:

i~
dc±
dt

= E±c±.

Find the value of E± and prove that in the limit Ω� |δ|

E+ =
~Ω2

4δ
, c+ =

(
0
1

)

E− = −~δ − ~Ω2

4δ
, c− =

(
1
0

)
such that the shift in energy level is

∆E =
~Ω2

4δ

4. Show the value of the energy shift in the limit Ω� |δ|!

2.2 Spontaneous Emission

In the previous section we came to understand how the composition of atoms will change due to the
incoming photons from a laser. We also need to understand how the atoms will evolve in the absence of
photons. We know that an atom can also emit a photon and decay to its ground state. This spontaneous
emission case is quite complicated (even Einstein couldn’t solve it without simplification), as we have to
consider the interactions between the emitted photons and the other atoms. Even worse, the emitted pho-
tons can have any polarization and direction. Although the relation is complicated, we can try to solve it
by using a simple model that will sum over all possibilities.

From the more detailed quantum mechanical calculation, we will find that the amplitude of the excited
state is given by

dce
dt

(t) = −
∑
S

|ΩS |2
t∫

0

dt′e−i(ω−ωa)(t−t′)ce(t
′) (17)
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Where the subindex S denotes the states of the emitted photon. By using the statistical argument, we
can turn the sum into an integral over all possible states. In order to do this we need to go to momentum
space!

1. Consider a cube in position space with sides of length L. We want the cube to have fixed boundaries
such that the electric field ~E at the boundary is equal to zero. Write down all possible wave vectors
~k = kxx̂+ ky ŷ + kz ẑ that satisfy this boundary condition.

2. We will now move to momentum space! In momentum space, what is the size of the unit volume?
Remember that for a polarized photon, we can’t differentiate photons on φ or π + φ polarization.

3. By using de Broglie relation k = ω
c and V = L3, write down dn in spherical coordinates. Where n

denotes the total number of modes in our momentum space.

4. In order to follow up the calculation, we need to get ΩS from the energy of interaction between the
photon and the electron. This relation is well studied and is given by,

~ΩS = −~µ ·
√

~ω
2ε0V

ε̂ (18)

Where ε̂ is some arbitrary direction of the photon, and ~µ is related to the atom. We can choose this
to point in the ẑ direction. We will then be able to replace the summation by integrating over the dn
that we found. After integrating over θ and φ, show that you will get:

dce
dt

(t) = −
∞∫

0

dω ω3µ2

t∫
0

dt′e−i(ω−ωa)(t−t′)ce(t
′) (19)

5. During the derivation of equation 19 we assume that ~µ varies slowly. In order to solve this integral we
need to be able to pull out the coefficient ce(t

′) from the time integral. What is the assumption that
will make this possible?

6. After we pull out the coefficient ce(t) we can solve the time integral. Although the time integral is not
trivial when we take the limit t → ∞, by using computational software show that we can state the
time integral as,

lim
t→∞

t∫
0

dt′e−i(ω−ωa)(t−t′) = πδ(ω − ωa)− P
(

i

ω − ωa

)
(20)

Where δ is the Dirac-delta function and P is the Cauchy Principal value function.
This problem is very difficult and will not be worth very many points. You don’t need to do this problem
to do the rest of the section

7. We can neglect one term of the time integral as it’s completely imaginary, and we can integrate over
ω. Show that we find

dce
dt

= −γ
2
ce (21)

State γ in terms of constants related to the atoms and lasers.

8. The γ that you found here is the true decay rate of the excited state. Why do we say that γ is the
true decay rate instead of γ/2?
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2.3 Optical Bloch Calculations

We will now discuss the “drag force” due to photons on an atom. In the actual derivation of “drag force”
we can no longer use the semi-classical derivation of the wave function to express how atoms absorb photons.
Here we are going to introduce a matrix that will represent the state of the system. Let,

ρ =

[
ρee ρeg
ρge ρgg

]
(22)

When we can clearly differentiate whether the atom is in the excited state or ground state, the density
matrix can be related to the coefficients that we found in an earlier part. This is referred to as a “pure
state.” However, when the atom is in a mix of states, it is referred to as an entangled state, which can not
be decomposed. The pure state is given by

ρ =

[
cece cecg
cgce cgcg

]
(23)

1. Write down the first order differential equations in terms of Ω and δ that relate each term of the ma-
trices with each other due to the fluctuation in the field from the incoming photons. Use the equations
that we have from part 2.1.

The relations between terms in the matrices can be found by observing each term in the pure state rep-
resentation and the relations that we just found in the previous part. While it’s losing it’s meaning in an
entangled state, the relations are still valid. From part 2.2, we find that due to the spontaneous emission,
the coefficient related to the population of the excited state will decay with the rate of γ/2.

2. Show that due to the spontaneous emission :(
dρee
dt

)
spontaneous

= −γρee (24)

3. By combining both effects, show that we will get:

dρee
dt

= −γρee + Im
[
Ωρgee

−iδt] (25)

d

dt

(
ρgee

−iδt) = −
(γ

2
+ iδ

)
ρgee

−iδt +
i

2
Ω (ρee − ρgg) (26)

4. Show the relations between:

(a) ρee and ρgg

(b) ρge and ρeg

5. Based on the relation that you found in 4, it is easier to define a new parameter, namely w ≡ ρgg−ρee.
Using this parameter, derive both dw

dt and
dρeg
dt in the new variables and other constants!

Based on our initial density matrix of the system, the system will evolve due to the fluctuations in the
electromagnetic field from the laser. As in the other physical problem, we are only interested in the steady
state solution of the system, as it is hard to reproduce the same system with the exact initial conditions.

6. Write down the equations that represent the steady state of the system!

7. Write down the w and ρeg in steady state. Express it in the saturation parameter given by

s ≡ |Ω|2

2
∣∣γ

2 − iδ
∣∣2 (27)
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This saturation parameter is related to how well the atoms can absorb the beam. We can also denote s0 which
is the saturation parameter when the laser is at resonance frequency. The resonance saturation parameter
is also related to the ratio of the intensity: s0 ≡ I

Is
. Where Is ≡ πhc

3λ3τ . In steady state the absorption and
decay rate of atoms are equal and noted by γp ≡ γρee.

8. Write down the expresion of both s0 and γp! Show the limit of γp for very high intensities (I � Is)!

3 Forces on Atom

3.1 Quantum Mechanic and Classical Physics Relations

From the first section we already know how the photon can transfer its momentum to the atoms from
collisions using the semi-classical derivation. While from the second section we know how much the photon
will interact with the atoms using Quantum Mechanics. With these tools in our hand we want to derive the
effective forces that our atom experiences.

Given that classical phenomena lie in some subset of all natural phenomena, we expect that results from
quantum mechanics should reduce to their classical counterparts in some limit. In this subsection, we will
explore how expectation values in quantum mechanics obey the classical equations of motion.

1. In quantum mechanics, all physical quantities of interest are represented by linear operators. For
example, we have the position operator x̂ and the momentum operator p̂. Briefly, a linear operator
Ô is a function that takes a vector |Ψ〉 and returns a new vector |Φ〉, which satisfies certain rules of
linearity:

(αÂ+ βB̂) |Ψ〉 = α(Â |Ψ〉) + β(B̂ |Ψ〉), (28)

where α, β ∈ C are scalars. To proceed with our derivation, we must define a mathematical operation
between linear operators. Given two linear operators Â, B̂, their commutator bracket is defined as[

Â, B̂
]

= ÂB̂ − B̂Â. (29)

For operators which act as simple multiplication, the commutator bracket is always equal to zero.
However, for general linear operators, this is not true. For example, for the operators x2 (multiply a
vector/function by x2) and ∂/∂x (take the derivative of the vector/function with respect to x).[

x2,
∂

∂x

]
f = x2 ∂

∂x
f − ∂

∂x
(x2f)

= x2 ∂f

∂x
− 2xf − x2 ∂f

∂x
= −2xf

Thus we find, [
x,

∂

∂x

]
= 2x (30)

For the momentum operator, defined as p̂ ≡ −i~ ∂
∂x , and Hamiltonian (Energy Operator) Ĥ, prove

that [
Ĥ, p̂

]
= i~

∂Ĥ

∂x
(31)
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2. The expectation value in quantum mechanics is defined as the expected outcome of measurements on
a system. It is mathematically defined as: 〈

Q̂
〉

= 〈Ψ| Q̂ |Ψ〉 (32)

Where here |Ψ〉 is the wave function of our system, and 〈Ψ| is defined as the conjugate transpose of
the wave function. In basis vector notation this is noted as,

〈Ψ| = |Ψ〉†

(
a b c

)
=

ab
c

†

Given that the Hamiltonian operator is related to the time evolution of the Schrödinger equation,

i~
d

dt
|Ψ〉 = Ĥ |Ψ〉 (33)

Show that,

i~
d

dt
〈Ψ| = −Ĥ 〈Ψ| (34)

3. Prove that for any operator Q̂, the time evolution of it’s expectation value is given by,

d

dt

〈
Q̂
〉

=
i

~

〈[
Ĥ, Q̂

]〉
+

〈
∂Q̂

∂t

〉
(35)

4. Using equation 35 prove the Ehrenfest Theorem that states,

F = −

〈
∂V̂

∂t

〉
, (36)

where the expectated force is defined as

F =
d 〈p̂〉
dt

(37)

and the Hamiltonian operator is:

Ĥ =
p̂2

2m
+ V̂ (38)

where V̂ is the potential energy operator of the system. From this theorem we can see that the
expectation value of the force obey the classical law F = −∂V∂x .

3.2 Cooling

We are now ready to derive the force on an atom due to interactions with photons from the laser as we
have already derived both statistical and quantum mechanical aspects of the interaction between photons
and atoms.

1. We will first consider the effect of absorption followed by spontaneous emission by the atoms. Consider
a beam of photons with incoming wave vector ~k. In this first estimation assume that the atoms are
not interacting with each other. Calculate the force experienced by the atoms in steady state!
Hint: What is the average of momentum change for each spontaneous emission? Remember that the
direction is random.
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2. The first estimation that we do in 1 is not sufficient for the system where the atoms are interacting
with each other. From quantum mechanics we can get that the actual force experienced by the group
of atoms is given by,

F =

(
∂Ω

∂x
ρeg −

∂Ω

∂x
ρeg

)
(39)

Using the fact that we can state the position derivative of Ω as

∂Ω

∂x
= (qr + iqi)Ω, (40)

derive the equations for dΩ
dt , dw

dt , and
dρeg
dt for the first order correction of the steady state condition

that we initially found in 6!
Hint: Use the steady state value of w and ρeg for deriving all of these quantities as we only consider
the first order corection.

We will now consider atoms trapped in a region with standing waves of photons.

3. Prove that in standing waves qi = 0 and qr = −k tan (kx)!

4. Derive the expression of F in this case, using equation 39 and other quantities that we found earlier
in part 2!

5. Show that, in the limit s� 1, we can represent the force as

F (x) = F0(x)− β(x)v (41)

6. By averaging the force over x, show that 〈F0(x)〉 = 0, thus the effective force is equal to 〈F 〉 = −βx
where β ≡ 〈β(x)〉.

7. Write down the expression for β.

8. In the actual experiment, we can determine the value of β as a function of detuning to determine
the saturation parameter on the resonance frequency s0 by changing the detuning of our laser. Using
the data given below in Figure 5, determine s0 of our atoms if we are using NdCR:YAG laser with
wavelength of 1.064 µm.

Plot the data, and the linearized data! From the regression, estimate the value of s0 and give error
estimates as well!
Hint: You should be able to do simple linear regression on the equation of β

In the previous part, we were calculating the drag force on atoms suspended in standing waves. We see that
the atoms will experience a drag force proportional to the velocity. Experimentally, it is harder to create a
cavity with standing waves of photon. The usual procedure of laser cooling involves two lasers opposite to
each other with the same frequency ωl. Due to the Doppler shift, the atoms see the two lasers as having
different wavelengths. When the intensity of the laser is low enough, we can assume that the atoms will not
interact with each other, thus we can use the steady state force we found in 1.

9. Determine both F+ and F− experienced by the atoms! Where F+ is the force on atoms due to the
red-shifted laser.

10. Write down the total force FOM = F+ +F− experienced by the atoms. In limit of small Doppler shift,
show that we can write this force as

FOM = −ηv. (42)

11. What is the requirement of ωl such that the atoms are decelerating?
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Figure 5: Table for subsection 8

12. Show that in the limit s0 � 1 we will find that η = β!

13. Now we no longer assume the small Dopper shift. Determine the maximum of FOM as a function of v!

By knowing the maximum FOM we will know how to set up our lasers to achieve the maximum deceleration.

3.3 Laser Cooling Limit

While laser cooling can slow down the particle, we know that there exists a limit to this method. In this
subsection, you are asked to discuss this limitation and how we should approach it.

1. Discuss the source of this limit!
Hint: Consider an atom initially at rest and experiencing the absorption - emission process

2. Show that the heating power due to the phenomena in 1 is given by,

Φheat = 2
~k2

M
γp (43)

3. Derive the minimum temperature of the system as a function of ωl!
Hint: Use the FOM

4. Show that there is a universal limit (even when we already minimize the ωl) that only depends on the
decay rate. This is known as TDoppler.

End of the Paper
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