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Guidelines

Student teams will have a total of one week to complete the exam from start to finish. There are two
separate sections for this examination: one section on Laser and Plasma Physics, and one section on Entropy
and Statistical Mechanics. Teams may complete both sections or choose to complete only one, as is specified
in the grading explanation below. We recommend that teams set aside approximately 20+ hours to allow
enough time for successful completion. Please refer to the submission explanation below for details on both
formatting and the submission process.

Grading

Students are encouraged to work on as much of both sections of the exam as possible. However, teams
may choose to submit solutions for only one of the two sections if they desire. The two sections will
be graded separately, and may not necessarily be worth the same amount of points. The award structure
will be as follows:

1. Awards will be given to the four teams with the highest score in each section (an award for first
place, second place, third place, and fourth place). One team can win an award for both sections, such
as second place in Laser and Plasma Physics and fourth place in Entropy and Statistical Mechanics.
Therefore teams are encouraged to attempt solutions for both sections of the competition.

2. We will additionally award one overall award to the highest scoring team on the entire com-
petition. A team which wins this overall award can still receive one of the top four awards for each
individual section. The team that wins this overall award will most likely have completed both sections
of the exam. It will be at the judges’ discretion to choose the overall award for the best submission.

3. Special awards will also be given for honorable mentions, the most elegant solution, and the most
creative solution.

Collaboration Policy and Resources

Students participating in the competition may only correspond with other members of their team. No
other human correspondence is allowed, including: mentors, teachers, professors, and other students. In
general, participating students are barred from posting content or asking questions related to the exam on
the internet (except where specified below). Students are, however, allowed to use the following resources:

• Online: Teams may use any information they find useful on the Internet. However, under no circum-
stances may they actively post content or ask questions about the exam.

• Piazza page: Teams are encouraged to create an account on Piazza and register in the class at
the following URL: http://piazza.com/princeton_university_physics_competition/fall2016/
pupc2016. The access code is: pupc2016. This resource can be used by teams to ask questions about
the content of the exam. Please do not post any of your solutions, partial or complete, when asking
questions on Piazza.
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• Published Materials: Teams may take advantage of any published material, both printed or online.

• Computational: Teams may use any computational resources they might find helpful, such as Wol-
fram Alpha/Mathematica, Matlab, Excel, or lower level programming languages (C++, Java, Python,
etc). For some sections, the use of computational resources is highly advised.

Citations

All student submissions with outside material must include numbered citations. We do not prefer any
style of citation in particular. Students may find the following guide useful in learning when to cite sourced
material: http://www.princeton.edu/pr/pub/integrity/pages/cite/.

Submission

All submissions, regardless of formatting, should include a cover page listing the title of their work,
the date, and signatures of all team participants. The work must be submitted as one single
PDF document with the “.pdf.” extension. All other formatting decisions are delegated to the
teams themselves. No one style is favored over another. That being said, we recommend that teams use a
typesetting language (e.g., LATEX) or a word-processing program (e.g. Microsoft Word, Pages). Handwritten
solutions are allowed. Note: we reserve the right to refuse grading of any portion of a team’s
submission in the case that the writing or solution is illegible.

Teams must submit their Online Part solutions by e-mailing pupc@princeton.edu by 11:59 am (noon)
Eastern Time (UTC-5) on Saturday, November 19, 2016. Teams will not be able to submit their solutions to
the Online Part at any later time. Any team member may send the submission. The title of the submission e-
mail should be formatted as “SUBMISSION - Team Name”. Note: all teams may make multiple submissions;
however, we will only grade the most recent submission submitted before the deadline. Teams will receive
confirmation once their submission has been received within at most two days. In the case of
extraordinary circumstances, please contact us as soon as possible.

Sponsors

Collaborators
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Entropy and Statistical Mechanics Section

The subject matter of this document is statistical mechanics, or the study of how macroscopic results
manifest from microscopic interactions in systems with many interacting parts.

Our goal is to provide a unified introduction to statistical mechanics using the concept of entropy. A
precise definition of entropy pervades statistical mechanics and other scientific subjects and is useful in
its own right. While many students may have heard the word entropy before, entropy is rarely explained
in its full detail or with rigorous mathematics, leaving students confused about many of its implications.
Moreover, when students learn about thermodynamic laws, laws that describe the macroscopic results of
statistical mechanics, like “change in internal energy = heat flow in + work done on a system”, the concepts
of internal energy, heat, and work are all left at the mercy of a student’s vague, intuitive understanding.

In this document, we will see that formulating statistical mechanics with a focus on entropy can provide
a more unified and symmetric understanding of many of the laws of thermodynamics. Indeed some laws of
thermodynamics which appear confusing and potentially unrelated at first glance can in fact all be seen to
follow from the same treatment of entropy in statistical mechanics.

Contents
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4.2 Dissipation in computational systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Learning goals of this topic: This topic is meant as an exercise in learning more so than an exercise in
solving problems or external research. The goal of this topic is for the reader, who has not necessarily seen
any statistical mechanics in their education so far, to walk away with a set of examples and ideas that will
be helpful long into the future.

Topic format: This document consists of long sections of explanatory material with helpful exercises and
questions interspersed. Much of the grading will be based on sections that ask you to explain or interpret
results in your own words. We are looking to see how well you understand the subject, and are not overly
concerned with minor errors in completing exercises.

Expected amount of work: Do not expect to understand the concepts in this document after only one
read through. These topics take time to absorb. While it may feel like you are not getting much accomplished
as you try to understand the reading, we expect that it may be necessary to read some passages four times
in a row before understanding it completely. Because there are not too many questions in this document,
you should have time to complete the readings.
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Many pages of this document have only one or two places where the author asks for input and response
from the readers. Some sections contain no questions. We would encourage you not to skip reading these
sections completely, as all sections of this document will be beneficial to understand.

Additional reading materials and resources

While this document is meant to generally stand alone as an explanation of entropy, free energy, and
related concepts, you may find a few outside sets of information useful:

• Required reading:

– Equilibrium Information from Nonequilibrium Measurements in an Experimental
Test of Jarzynski’s Equality, J. Liphardt et al., Science 296, 5574 (2002): this paper experi-
mentally verifies the results of the above paper by C. Jarzynski. It is explored in detail in Section
4.1.2.

• Additional potential resources:

– Thermal Physics by Charles Kittel and Herbert Kroemer (1980, W. H. Freeman and Company):
an extensive introduction to concepts discussed within this document. While this reference may
be useful for clarifications of certain concepts, it is not at all essential.

– Nonequilibrium Equality for Free Energy Differences, C. Jarzynski, Phys. Rev. Lett. 78,
2690 (1997): this reference is discussed in Section 4.1 of this document as an application of the
theoretical results derived herein.

– Feynman Lectures on Computation by Richard Feynman, edited by Tony Hey and Robin
W. Allen (1996, Perseus Publishing): this reference is an interesting book which contains many
useful and intuitive explanations of statistical applications in computing. Of particular interest
for this document is the chapter on reversible computation. This reading is relevant to Section
4.2, all though it is by no means necessary to complete the questions in that section.
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1 Entropy as information

At this point in your life, you may have heard the word entropy, but chances are, it was given a vague,
non-committal definition. The goal of this section is to introduce a more explicit concept of entropy from
an abstract standpoint before considering its experimental and observational signatures.

1.1 Quantifying the amount of information in the answer to a question

Entropy, while useful in physics, also has applications in computer science and information theory. This
section will explore the concept of information entropy as an abstract object.1

We will first consider entropy not as related to the concept of heat in objects, but as a purely axiomatic
quantification of what we mean by the information we receive when we hear the answer to a question. For
a concrete example, imagine that someone flips a coin and doesn’t reveal which side landed upright and we
ask “what was the outcome of the coin flip? Heads or tails?” When they now tell us the answer, how much
“information” do we gain by learning what the outcome was? In other words, we are faced with determining
how much information is received when we hear the answer to a question that has a probability distribution
of outcomes. This question was asked by Claude Shannon in 1948.

After pondering this question for a long time, you might come up with a few criteria that any reasonable
measure must obey, such as:

1. If the question has two answers that are not dependent on each other, then the measure of information
contained in answering both questions should be the same as the sum of the information gained in
learning the answer to each one individually.

For example, if we have two independent coin flip experiments, the information gained in hearing the
outcome of one coin flip should be the same as the information gained in hearing the outcome of the
other, so that the total information gained is the sum of the individual amounts of information gained.

How does this concept generalize to questions which have interdependent answers? Two such questions
might be “am I wearing gloves?” and “am I wearing a sweater?”. The exact statement of this criteria
is more complicated and we will not ask you to consider it here.

2. The measure of the information learned should not depend on the language used; it should depend
only on the probability distribution of possible answers.

For example, it should not depend on the fact that we are flipping a coin and asking whether it is heads
or tails instead of flipping a dinner plate and asking if it lands upright or not. The measure of the
information gained should be the same. For this reason, the measure should depend on the probability
distribution of answers to the question, not the content of the answers.

3. The information gained should be largest when all possible answers are equally likely.

If we have no idea which answer it will be, we will gain the most information possible when we hear
an answer. For example, if a fair dice with 6 sides is rolled, it has an equal chance of landing on each
side, and you gain the most information possible by learning which side the dice landed on. On the
other hand, if the dice was unfair and landed on a specific side every time, then you learn no new
information by learning the outcome of the dice role; you already knew what it would be before you
rolled the dice.

While there are other possible additional criteria to use when defining the information gained by hearing the
answer to a question, these are sufficient for our purposes in this document.

Now, for a definition: given a probability distribution of possible outcomes (such as answers to a question)
with associated probabilities pi for each outcome, the logical quantification of the average information gained
if one outcome is obtained (if we learn the answer to a question) is the Information Entropy I,

I =

N∑
i=1

pi log(1/pi) = −
N∑
i=1

pi log(pi). (1)

1The author would like to acknowledge that some of the writing in this section is based on information from a class in
statistical mechanics taught by Prof. William Bialek at Princeton University.
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Questions Explore this definition of information entropy for a few example probability distributions over
a finite set of outcomes (such as 2 or 4) and summarize your findings. Note that log(x) refers to the natural
logarithm of x (base e, not base 10 or base 2), and will refer to the natural logarithm throughout this
document. Is this quantity always positive (despite the minus sign in the definition)? For a fixed number
of possible outcomes, N , but varying probabilities pi, what is the range of possible values that I can take
(the maximum minus the minimum)? What is the minimum amount of information you can learn from the
answer to a question, in words, and why? A simple example to begin with is the probability distribution
of a coin toss, where pheads = 1/2 and ptails = 1/2. What happens if you measure the logarithm with a
different base (such as base 10 instead of the natural logarithm)? This is related to the concept of measuring
information with different scales, just as we can measure a mass as 1 kilogram or as 1000 grams. Now, go
back and consider the definition of information entropy with respect to the criteria listed above. Does this
definition of entropy satisfy criteria 1, 2, and 3? (Ignore the case of interdependent answers in criterion 1.)
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2 Where does entropy show up in Statistical Mechanics?

We will now consider how entropy relates to physics. This section contains no questions for the reader.
Consider a glass of water. At any given moment, if you were to look at a snapshot of all the atoms of

water in the glass, there would be an unimaginably large number of arrangements these atoms could be in.
Statistical mechanics on some level requires us to admit that we are not all knowing beings, and cannot
always tell if the system is in one configuration or another. In effect, we assume that we could never know
the location of all of these molecules at one time, and as such we can only ask other types of questions.
This is where entropy shows up. Now, we ask “what is the configuration of atoms in the glass of water?”
The set of possible outcomes is the set of all possible positions of all the atoms. This is a large set, and we
would not hope to actually be able to calculate the information entropy of the system by finding each pi
and computing the information entropy I. On the other hand, the abstract language of mathematics lets us
engage with this problem regardless of our gaps in knowledge. Even if we do not know all of the pi, they
still exist, and so the entropy of this question still exists and is not meaningless to talk about.

Let us consider a simpler picture. Various symbols will be introduced to define quantities. Do not be
intimidated, but rather read slowly to absorb the information. We define Ω (capital omega) as the set of
all possible outcomes ωi (lowercase omega) for the configuration of atoms in the glass, indexed by a number
i. That is, the set Ω = {ω1, ω2, . . . , ω9, ω10} would describe a situation with 10 possible outcomes, and so
with 10 elements.2 These 10 outcomes are the possible configurations of atoms in the glass. It may be hard
to imagine some set of atoms having only a finite number of possible configurations, rather than an infinite
number, but for now assume that it is true. If we as physicists have not discovered energy or any other
variable that might make one outcome more likely than any other (people usually say lower energy states are
more likely, and we will see why), we could expect that each outcome ωi is equally likely. That is, pi = 1/10
for all i. This seems rather simple, and it is reasonable to question why it would be true that each pi = 1/10.
For now, assume it is true. We could immediately ask what is the information entropy in the question “what
is the state of the water glass?” In this case, I = log(10).

However, we are not always interested in what the state of the system, is, but rather some other property,
such as how high the water in the glass is. If each outcome ωi has a different value for the height of the
water, the situation is more complicated, and the question “what is the height of the water in the glass”
would have a different information entropy than the question “what is the state of the system?”.

As a concrete example, let us say that 4 of the ωi have a height 5 cm, 3 have a height 3 cm and 3 have
a height 2 cm. Now, the question, “what is the height of the water’?’ has a less well defined answer. We
can compute the expected height we would see on average (given the probability of each ωi). This is h =∑
i pihi = (4 × 5 + 3 × 3 + 3 × 2)/10 cm = 3.5 cm. We can also compute the information entropy of the

question. The information entropy, I, is given by

I =
2

5
log

(
5

2

)
+

3

10
log

(
10

3

)
+

1

5
log

(
5

1

)
≈ 1.0495.

Note that this information entropy is different from the value log(10) ≈ 2.3026 for the entropy of the state
of the system. Therefore, you must be careful about what questions you are asking and answering when
computing information entropy.3 Both the average height and the information entropy tell us something
different about the answer to the question “what is the height of the water?”

Much of statistical mechanics follows this same vein of reasoning: we assume some set of states of the
system are equally likely, but then we ask something about a property that varies across the states (like
energy, or the height of water). What ends up mattering for this secondary question is how many states
there are with a certain property. Ultimately, entropy is intimately related to how we understand and think
about answers to these questions.

2In general, Ω could have N elements, where N could be as large as 1023!, a very large number.
3It is also useful to note that the information entropy is not telling us something about how precisely we know the height of

the water. The information entropy I would have the same value if the three possible heights were 1 cm, 1.0001 cm, and 58476
cm, for example.
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2.1 An example: rigid chain and the “force” that entropy causes

We will now consider a more concrete example system than a glass of water molecules and how entropy
informs our understanding of this system.4

2.1.1 A description of the physical model

Consider a chain that is made up of N rigid straight sections connected to each other at bendable hinges.
Assume that one end of the chain is fixed at position x = 0, while the other is free to move around.

We will make one other crucial assumption which may not make intuitive sense. For the purpose of this
example, assume that the states of the chain that we observe are always with the entire chain confined to
one dimension, the x axis. This means that the bends at each hinge are always 0◦ or 180◦ (0 or π radians),
and the chain can double back on itself any number of times. We will assume that there is some way for
the system to go from a bend being 0◦ to 180◦, but we do not care what it is at this point. Examples of the
four possible configurations of a rigid chain with two segments are shown in Fig. 1.

Figure 1: Diagram of the four possible configurations of a rigid chain with two segments. The chain is
confined to lie in one dimension and the end of the chain designated by the blue dot is held fixed at x = 0.

We will further assume that each segment of the chain has length 1/2 (in some units). We will also
assume that N is an even number so that the location of the free end of the chain is at a position x that is
an integer (because each segment of the chain has length 1/2). This choice is not important, but will make
calculations easier. For this reason, a chain with two segments can have its end position lie at x = −1, x = 0,
or x = 1, as is shown in Fig. 1.

2.1.2 Finding the probability of certain positions

Like before, we assume that all configurations of the chain are equally likely, meaning the chain has no
preference for whether a hinge is straight or bent at 180◦.

Questions Now, what is the probability distribution of the location of the free end of the chain if all
configurations of the chain are equally likely? There are multiple ways of finding this answer, but for now,
try to follow this “chain” of reasoning:

1. List all possible locations of the free end of the chain.

2. List the number of possible configurations of a single link in the chain. Now, what is the number of
possible configurations for the entire chain all at once? (We are asking how many outcomes for the

4The author would like to acknowledge that this example is based on information from a class in statistical mechanics taught
by Prof. William Bialek at Princeton University.
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chain configuration are possible, not how many locations. This is the analogous question to the above
example of a cup filled with water. We are not asking how many possible heights of the water in the
glass there are, but rather how many possible states there are.).

3. For a given −N/2 ≤ n ≤ N/2, how many ways can the free end lie at position x = n? (Hint: consider
the case of a small chain first and see if you can work your way up to a general expression involving
factorials, where m factorial is m! = (m)(m− 1)(m− 2) · · · (2)(1).)

4. If all of these individual configurations of the chain are equally likely (meaning any given configuration
of hinges being bent or not bent), then what is the the probability p(x = n) that the chain position x
is given by a specific value of n for |n| ≤ N/2?

You should now have some grasp of what a likely position of the end of the chain is.

Note that the most likely locations of the end of the chain are the locations for which the most number
of states of the system have that location. This idea in fact relates back to our idea of entropy; if you were
told that the end of the chain was actually at a certain value of x = n, but that all states which produced
this end of chain location were equally likely, you could compute the information entropy of the question
“what is the state of the system given that x = n?”. For clarity, we can define this information entropy as
σSys(x = n). In some sense, you have already done the necessary work to compute σSys(x = n)) in the above
steps. Write down a formula for σSys(x = n) explicitly.

Next, write down a formula relating p(x = n) to σSys(x = n) for the same n. Note that larger values of
σSys(x = n) relate directly to larger values of p(x = n).

2.1.3 Stirling’s approximation: a way to simplify the formula

Now we shall engage in a classic past-time of physicists: approximation. We will use the fact that n! is
approximately given by

n! ∼
√

2πn
(n
e

)n
(2)

when n is large. This equation is known as Stirling’s approximation. Elementary explanations of why this
is true can be found online if you are intrigued, as well as qualifications of its validity.

Questions Now, derive an approximate expression for p(x = n) that is simpler than the one you found
before by using Stirling’s approximation. You may also find it useful to know that

ex = lim
m→∞

(
1 +

x

m

)m
.

We shall refer to this approximate probability formula that you find as ps(x = n), and it is not the exact
value of the probability that x = n, although it is extremely close in most cases and makes some of the
resulting physics clearer. You should obtain, with sufficient approximation, a proportionality of

ps(x = n) ∝ 1√
N

exp

(
−4x2

N

)
.

(The symbol ∝ means “is proportional to” up to a constant factor. The notation “exp(x)” means ex. If
you do not get precisely the same answer, this is alright, just show your work. The factor of −x2 in the
exponential is what is important.) Stirling’s approximation is important because it allows us to make sense
of the behavior of the system when N is large and when the exact formula is not particularly enlightening.

In particular, with our result for ps(x = n), we can find an expression for σSys(x = n) which is much
easier to work with. Use our formula relating p(x = n) to σSys(x = n) for the same n that we derived above
to find a simpler expression for σSys(x = n).
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2.1.4 An aside on energy vs. entropy

One of the important results of thermodynamics is that, for an abstract system exchanging energy with
an energy reservoir, the probability of observing any state ωi of the system is proportional to exp(−E(ωi)/τ).
The reservoir is simply a collection of objects with a large energy that can exchange that energy in some way
with the abstract system. The quantity E(ωi) is the energy of state ωi and τ is a property of the reservoir
called temperature. We will discuss this in more detail in Section 2.2.

Now, consider a 1 dimensional spring with spring constant k and equilibrium extension 0 that exchanges
energy with a reservoir somehow. The probability of observing an extension to a length x would be propor-
tional to exp(−(1/2)kx2/τ).

In some sense, we can make an analogy between the rigid chain and this 1 dimensional spring. In the
case of the rigid chain, the negative of the entropy, or −σSys(x = n), plays the role of an “energy”, and
higher values of −σSys(x = n) lead to an exponentially suppressed probability of observing that value of
x. Taking the analogy further, −σSys(x = n) changes approximately as (1/2)kx2, which is similar to the
potential energy of an extended spring. In the end, the system behaves nearly identically to a 1 dimensional
spring exchanging energy with a bath. However, the potential energy of the analogous “spring” arises only
from the entropy of the system, not from any real spring forces.

Summary The above discussion was meant to provide an intuition that entropy well and truly matters for
a system such as the rigid chain. Now, it remains to be seen whether my interpretation of entropy acting like
a spring restoring force has any validity (you should of course be skeptical of this rather contrived example).

2.2 An abstract derivation of entropy in statistical mechanics

Now that we have considered a specific example with an intuitive exhibition of how entropy appears in
a mechanical system, we will consider a more general application of entropy in statistical systems.

2.2.1 Definitions

Consider an abstract system and reservoir (think of a small object like a glass of water and the room
around it). The system S and reservoir R each have possible outcomes ωSi and ωRj where i and j range over

some set of integers. However, we can consider their outcomes jointly, as possible outcomes ωS,Ri,j defined to

be ωS,Ri,j = {ωSi , ωRj }, meaning that S is in state i and R is in state j at the same time. Now, let us consider
another quality of the system. We will call it energy, but what it really is doesn’t matter to us yet. Let us
assume that the total energy Etot = ERes + ESys is conserved and therefore doesn’t change in time (again,
this is just an assumption). We may not know the exact value, but it is conserved nonetheless. Let us now

make the assumption that all possible outcomes ωS,Ri,j are equally likely, as long as they have the correct total

energy. Thus we have the two assumptions:5

1. All possible states for the combined system and reservoir ωS,Ri,j must have the correct total energy.

This assumption should be somewhat familiar to physics students, and follows from the fact that energy
is conserved globally, and that we assume the system and reservoir together are isolated from anything
else in the universe.

2. All states for the combined system and reservoir that have the correct total energy are equally likely to
be observed.

Why are all states that have the correct total energy equally likely? To intuitively describe why, we
need to change how we think about this physical situation. In a classical system (in the case where

we ignore quantum mechanics), the system really is in one single state ωS,Ri,j at a given instant in
time. However, because of natural interactions, this state will change over time. In some cases, we can

5There are additional assumptions we are making, of course, but they are a little more subtle and less relevant to the point
here. On some level, stating that we can distinguish the energy of the system from the energy of the reservoir, and the states
of the system from the states of the reservoir, requires us to assume that there are not strong interaction energies between the
system and reservoir. This is not a relevant detail at our level of analysis here, however.
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assume that the system and reservoir will visit every possible state ωS,Rk,l over time, and that the system
and reservoir will spend roughly the same amount of time in each state as the state cycles through all
available states. As long as the changes between states occur very quickly compared to the timescale
between when we observe the system, then effectively we are just as likely to observe any one of the
states as any other. This is roughly the physical picture of why each state of the combined system and
reservoir with the correct total energy is equally likely to be observed.6 This is basically a statement
that we are as maximally confused as possible about everything about the system, except that total
energy is conserved.

These are not the only assumptions we will make in the course of our analysis, but they are the important
ones for now. It is important to keep track of additional assumptions we will make. We will now endeavor
to see what these assumptions imply about the likelihood of various states of the system.

2.2.2 A derivation

Having established the necessary notation, we will consider how likely it is for a certain state ωSk to be

observed which has energy Ek. Because all states ωS,Ri,j are equally likely, the probability of observing ωSk is

the number of states of the reservoir that can exist in a combination with ωSk , divided by the total number
of available states of the combined system and reservoir. This is just the usual formula for the probability
for event A to occur (a state ωSk of the system to be observed); it is the number of ways event A can occur
(the number of states of the combined system and reservoir which have the system in state ωSk ) divided by
the total number of possible events (the number of all possible states of the combined system and reservoir).
States of the reservoir, ωRj , that can pair with ωSk must have Ej = Etot−Ek because of the requirement that
the energy of the combined system is Etot. The number of states of the reservoir with energy Etot −Ek will
vary as a function of Ek. Indeed, we can define exp(σRes(E)) as the number of states of the reservoir which
have energy E. In this way, the function σRes(E) represents the logarithm of a specific number of states of
the reservoir. This should remind you of the entropy of a question with many, equally-likely answers.

Explicitly, the probability of observing a state ωSk of the system with energy Ek is given by

p(ωSk ) =
exp(σRes(Etot − Ek))

ζ1
, (3)

where ζ1 (the Greek letter “zeta”) is just a normalization constant that depends on the total number of
outcomes possible for the combined system and reservoir, and ensures the total probability is 1. We can now
define something called temperature τ (we will discuss its physical meaning later), to be given by7

1

τ
≡ β ≡ ∂σRes(E)

∂E

∣∣∣∣
E=Etot

. (4)

If we can assume that σRes(Etot−Ek) is only slightly altered from σRes(Etot), then to a good approximation
σRes(Etot − Ek) = σRes(Etot)− βEk, with β being the constant inverse temperature defined above, and

p(ωSk ) =
eσRes(Etot)

ζ1
exp(−βEk) =

1

ζ2
exp

(
−Ek
τ

)
, (5)

where we have used the fact that exp(σRes(Etot)) is a constant and we have defined ζ2 as another normal-
ization constant. The above formula is extremely important and its derivation should be well understood
because similar ideas and derivations will be used throughout this document.

One objection you may have to the above argument is whether we can truly consider temperature (as
defined here) to be fixed in some physical systems independent of Ek, or in other words you may wonder
what the degree of error is in the statement that σRes(Etot − Ek) = σRes(Etot)− βEk. In general, what we

6This physical pictures is further explained in Section 4.0.1.
7Note that ≡ is shorthand for “is defined to be”, as opposed to simply “equals”.
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are really doing here, if you have a background in Calculus, is Taylor expanding σRes(Etot − Ek) close to
σRes(Etot). First we write

σRes(Etot − Ek) = σRes

(
Etot

(
1− Ek

Etot

))
.

Next, to be concise, define εk ≡ Ek/Etot. Then by Taylor expanding we have

σRes(Etot − Ek) = σRes(Etot) + (−εk)Etot
∂σRes(E)

∂E

∣∣∣∣
E=Etot

+ (−εk)2 1

2!
(Etot)

2 ∂
2σRes(E)

∂2E

∣∣∣∣
E=Etot

+ · · · .

In the event that Ek is “small enough” so that εk = Ek/Etot � 1, then only keeping terms in the Taylor
expansion to first order in εk (the first two terms on the right hand side of the “=” sign) accurately describes
the value σRes(Etot − Ek). For a fixed Etot, this just requires that Ek is made small enough.

Questions If we now consider the probability of observing a certain energy rather than a certain state for
the system, what is the new formula for p(ESys = Ek)? If there are exp(σSys(E)) number of states of the
system at energy E, prove that

p(ESys = Ek) =
1

ζ3
exp(−β(Ek − τσSys(Ek)) =

1

ζ3
exp(−βF(Ek)) (6)

for some constant ζ3. Here we have defined a function called the Free Energy F(Ek) = Ek − τσSys(Ek)
as a function of Ek. This formula for p(ESys = Ek) should be reminiscent of the bendable chain example
derived earlier.

Note that the most likely energy of the system to be observed is the one which results in the lowest value
of F(Ek), and this energy is not necessarily the lowest possible value of energy. Can you describe in words
why this is true? What two effects are “competing” to determine the most likely state?

2.2.3 Clarifying types of entropy

As a clarification, I want to mention that we need to keep straight a few of the different entropies that
we are considering. As was discussed above, the entropy of a system is equivalent to the information entropy
of the question “what is the state?” Clearly, this has different meanings if we are talking about the state
of the combined system and reservoir, or if we are talking about the state of the system alone, or if we are
talking about the state of the system when we are at a fixed energy. Below is a list of the various entropies
we have been considering and their distinctions.

1. Entropy of the state of the combined system and reservoir:

This is the entropy of the question “what is the state of the combined system and reservoir?” While
this entropy is generally not considered in this document (it is not particularly useful), you should
know what it is. It depends only on the size of the set of all possible outcomes of the combined system
and reservoir, or {ωS,Ri,j }.

2. Entropy of the state of the system:

This is the entropy of the question “what is the state of the system?” Full stop. We assume we know
nothing about the energy of the system. We don’t care about the state of the reservoir. The entropy
is given by the formula in eq. (1) as

σSys ≡ −
∑
k

p(ωSk ) log(p(ωSk )). (7)

This value, σSys, is distinct from σSys(E), although their notation is similar.

3. Entropy of the state of the system at a fixed energy:

This is the entropy of the question “what is the state of the system if we know that the energy has
a specific value?” Generally, this will be denoted by σSys(E) rather than simply σSys, and it is the
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appearance of (E) that should alert you to whether we are considering the entropy of the state of
the system or of the state of the system at fixed energy. Is the entropy of the system at fixed energy
generally less than or greater than σSys (this question is just for you to think about, not respond to)?

4. Entropy of the energy of the system:

While we will not discuss this entropy much in this document, it is also possible to consider the entropy
of the question “what is the energy of the system?” We could write down the formula for this entropy
using the probability of each value of energy in eq. (6). Note that this is different than σSys. The main
idea to understand from this example is that the question “what is the energy of the system?” is a
distinct question from asking about the state of the system and so has a distinct value of information
entropy.

2.2.4 A pause for reflection

Question We now ask that you pause, reflect, and try to list all of the assumptions that went into the
derivation of the above result; in other words, effectively summarize your understanding of when the model
is valid or not valid. Try to come up with assumptions that were not even explicitly stated. The more you
understand about how a result is limited, the more you also understand how to apply it.

2.3 Why is our definition of temperature reasonable?

You probably did not expect temperature to be defined as the abstract quantity in eq. (4). Why would this
definition reflect the notion of temperature that you probably already have in your head? One conventional
notion of temperature is the amount of vibration of atoms in a material. Another way we think of temperature
is as defining a scale of energy. If one object is hotter then another object and we put the two objects in
contact, we expect energy to flow from the hot object to the cool object. Is this what happens with our new
definition of temperature in eq. (4) as well?

To better understand temperature as defined here, we will now explore a physical example of a reservoir
and system that share energy and think about how the temperature of this reservoir is determined.

A physical example: magnetic spins Consider a set of N independent magnetic spins that can point
either up or down. You can think of a magnetic spin as a very small bar magnet that points in a certain
direction (in the physical world, this is not what spin is, but for our purposes it works). Applying a magnetic
field applies a torque to the spin and forces it to align with the magnetic field. If the spin aligns with the
field, it is at a lower energy than if it anti-aligns with the field. In this physical example, assume there is
an external magnetic field pointing downward, so that the energy of each spin is η > 0 when the spin points
upward, and −η when the spin points downward.

From here on out, it is not critical to use the physical interpretation of this example to derive results.
However, the physical interpretation still applies.

Questions What is the shape of σSys(E)? For example, a basic correct description is “this function starts
at 0 for E = −Nη, increases to a maximum near E = 0 and goes back to 0 at E = +Nη. Moreover it is
symmetric for E → −E.” Do not bother with finding an exact expression of this function in this section of
the exam, but explain in your own words why the description of the shape above is correct.

In particular, first realize that possible values of E range from −Nη to +Nη. To identify the shape, you
can use much of the same mathematical work that you did in the previous section to analyze this example.
Just notice the parallels between the number of ways a chain can be at position x = n and the number of
ways the total energy of the spins can be at E = Nη for an integer |n| ≤ N .

A large reservoir of spins coupled to a smaller system Once you have found how σSys(E) behaves,
you can instead consider a system of spins with N � 1 as a reservoir of energy for another smaller system.
In this case, we can write the entropy of our reservoir of spins as σRes(E) with the same functional form as
σSys(E) which you found above. This is just a way of rewriting a label, and nothing deeper.
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Assume that a large bath of spins is hooked up to some smaller subsystem in a way where they can
exchange energy, but so that the total energy is fixed. For example, the smaller subsystem could be another
set of spins which are close enough to feel the magnetic field of the large reservoir of spins and exchange
energy with them.

Questions Using the language of the previous section, what is the temperature of the reservoir of spins
as a function of the energy of the reservoir? Again, focus only on the shape of the function based on the
shape of σRes(E) which you found above. Describe the shape in a similar way. When is the temperature
decreasing, and when is it increasing as a function of E? When is it maximum and when is it minimum?
You will note that the temperature of the reservoir is sometimes negative for some values of reservoir energy.
We will later see the meaning of this negative temperature.

Two equal sized systems of spins coupled to each other Now consider two large reservoirs of
spins of approximately equal size that are coupled to each other so that they can exchange energy. Again,
the total energy shared by the two reservoirs is fixed. If reservoir A and reservoir B have total energy
EA +EB = Etot, then the total entropy is σA(EA) + σB(EB) for a fixed distribution of energy between the
two systems. Recalling previous discussion, we can ask what distribution of Etot between reservoirs A and B
will be the most probable? The answer is, the one that results in the greatest total entropy of the combined
two reservoirs.

Questions Show that the most probable distribution of energy between reservoirs A and B is the distri-
bution which causes τA = τB , or equal temperatures for reservoirs A and B as defined in eq. (4).

A few claims about the time evolution of two systems that are brought into contact At this
point we will appeal to some intuitive reasoning that has not been adequately explained yet. We claim that
if you start out with some energy distribution EA and EB for the two reservoirs when they are isolated from
each other and then you bring the two reservoirs into contact so that they can exchange energy, they will
relax to the distribution with τA = τB which still respects the correct total energy EA + EB = Etot. When
I say “relax to”, I mean that the final probability distribution for the division of energy between the two
reservoirs will be such that it is highly unlikely to observe anything other than this final energy division that
produces τA = τB . The reason why this is true is that we are fixing the initial state, but once the reservoirs
are brought into contact and can exchange energy, all states with the correct total energy are equally likely
if we wait long enough; among all of these possible states, the energy distribution that is by far most likely
to be observed is the one with τA = τB .

Questions With this assumption about “relaxation” in mind, what happens if we somehow start the
system out with EA < EB < 0? You may use the fact that the final distribution of energy in the system will
produce τA = τB . For this and subsequent analysis, you should only need to know the shape of σ(E) (and
therefore τ as a function of energy) for both reservoirs. Consider the initial and final temperature of each
reservoir, defined as in eq. (4). Which way does energy flow? Is it from the higher temperature to lower
temperature system as we expect?

Now, consider if we begin the system with EA = −EB . Which way does energy flow in this case? From
higher to lower temperature? Is the temperature of one reservoir negative? Is it infinite at some point in
time during relaxation? Consider what happens if we instead look at β = 1/τ , the inverse of temperature.
How does energy flow relative to the initial values of βA and βB . Is the energy flow always in the same
direction (as in, always from high β to low β, or the reverse)? If so, perhaps the more physical quantity is
β = 1/τ , not τ . . .

You should now have some intuition for what the abstract definition of temperature τ as defined in eq.
(4) actually means, and how it functions in practice in the physical world. Moreover, we have seen that this
quantity τ behaves the way we expect of temperature from our everyday experiences in terms of energy flow,
at least in some cases.
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2.4 Extensions of the conceptual model

While we only considered systems with a variable called “energy” in our derivation above, whatever
that might be, we can all clearly think of other variables that might describe a system, such as volume, or
the number of particles contained in the system. These are clearly important for the interface between gas
molecules in the air and liquid molecules in water, or for the compression of a gas in the piston of a car.
If you have taken any courses on thermodynamics, chances are that you have encountered these variables
before, perhaps in terms of the ideal gas law, ρV = Nτ . The beauty of the abstract derivation above is that
it easily generalizes to include these other descriptions of a system that we might consider.

As a concrete example, consider a system and reservoir with some volume. Like energy, we can assume
that the system and reservoir occupy a total fixed volume, with the volume of the system much smaller than
that of the reservoir. Perhaps the system and reservoir occupy adjacent volumes, and push up against each
other through a thin, movable wall. We can again consider entropy, although this time as σRes(E, V ), a
function of energy and volume. Carrying out the same analysis as above, we would arrive at a probability
distribution as a function of E and V that behaves like

p(ESys = E, VSys = V ) =
1

ζ
exp

(
−1

τ
(E − τσSys(E, V ))

)
exp

(
−V ∂σRes(E, V )

∂V

∣∣∣∣
E=Etot,V=Vtot

)
.

If we define the pressure ρ to be

ρ ≡ τ ∂σRes(E, V )

∂V

∣∣∣∣
E=Etot,V=Vtot

,

then

p(ESys = E, VSys = V ) =
1

ζ
exp

(
−1

τ
(E + ρV − τσSys(E, V ))

)
.

In this case, the effective “free energy function”, if you want to call it that, is E + ρV − τσSys(E, V ) rather
than the free energy F(E) defined before. This function is often called Gibbs free energy, or G(E, V ). The
point is that, even though our conceptual model got more complicated because we now considered there to
be some kind of physical volume to our system and reservoir, we could still use the same method of derivation
as before to say something meaningful about the probability distribution of the system. It is important to
note that we need to be careful when applying the formula above. It should only be valid when the pressure ρ
and temperature τ are sufficiently independent of the system’s details and therefore approximately constant.
This requires that the energy and volume of the system are very small compared to the energy and volume
of the reservoir, for the same reasons that were explained in our earlier introduction of τ .
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3 A more precise analysis of free energy and entropy

The natural question to ask at this point in our analysis is what can we do with this all of this theory?
What can we calculate that actually has relevance for the real world? In particular, we may want to ask what
energy is extractable from a system, on average. In many ways, the answer to these questions is curiously
tied up with our understanding of free energy and entropy.

Let us return to considering the free energy functions F and G. So far we have been a little unclear about
what these functions are. We have treated F(E) and G(E, V ) as functions. To be more precise, these are
possible values of combinations of quantities that we observe, and each value of F(E), for example, has a
probability of being observed given by eq. (6). Rather than talk about the probability of each value of F(E)
that can be observed, it is often more useful to talk about something like the average value of F(E) that will
be observed. Similarly, it is often more useful to talk about the average energy that you will observe rather
than to talk about how likely each possible energy is to be observed. We can then ask questions about how
the average energy changes and how the free energy changes when we alter the system, and this will lead us
to understand the work that is extractable from the system.

Motivation for further study of free energy and entropy In this short section, we will give an
example of why a more precise understanding of free energy and entropy is needed; this example is meant
to be confusing, and to make you realize that some concepts you might have thought you understood were
actually very poorly explained.

Consider one of the first concepts that is usually taught in thermodynamics: that the energy of the
system obeys δE = τδσ − ρδV . (Here the notation δx just means a small change in a quantity x.) Without
further explanation of what these terms stand for, this statement is virtually useless. Which entropy is being
considered here, for example, of all of the types of entropy listed in Section 2.2.3? (You do not need to
actually answer this question here. It is rhetorical.) It is further argued that therefore δF = σδτ − ρδV
so that F is independent of entropy for a fixed temperature. It is usually then argued that changes in F
represent changes in the energy available for extraction from the system.

At this point, we note a few potentially confusing issues. First and foremost, F(E) in the statements
above, as well as E, are variables that take on a set of values with certain probability. What do we therefore
mean by changes in E, denoted by δE? Moreover, we have yet to make explicit what work done on a system
might consist of, and have yet to define energy available for extraction. Clarifying these concepts will be the
goal of the following analysis.

Outline of the subsequent analysis The following sections will be an endeavor to make the following
statements more precise:

1. What is a more general way to define free energy?

2. How does free energy relate to average values of energy in the system and to the entropy of the system
(which will be precisely defined), and how are changes in these values related?

3. How can we define energy that is available for extraction from a system and how can we define work
done on a system? In particular, how do we measure changes in these quantities?

First, we will consider in many ways the most simple system possible: a system coupled to an energy
reservoir without any concept of volume or other variables. Using this example, we will determine if we
can satisfactorily answer the above questions. Second, we will consider in full generality a system coupled
to a bath with any number of variables defining the system, such as energy and temperature, volume and
pressure, number of particles and chemical potential, and so on. The end result of this section will be a
precise understanding of the uses of free energy and entropy when analyzing a statistical mechanical system.

3.1 A system coupled to an energy reservoir

Here we will define a more general notion of free energy for a system coupled to an energy reservoir only.
We will then derive how changes in entropy, energy, and free energy are related for this system, as well as
what we mean by extractable work. This abstract system will serve as a model for more general systems.
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3.1.1 A new definition of free energy

In order to define a more general concept of free energy from an alternative perspective, we will first have
to define a few related pieces of machinery in statistical mechanics. One such ubiquitous piece of machinery
is the partition function Z, defined as

Z ≡
∑
ωk

exp(−βEk). (8)

The partition function Z is the normalization factor which we divide by to get p(ωk) = exp(−βEk)/Z. In
fact, Z is the explicit formula for the quantity ζ1 that we defined as the normalization constant in eq. (3).
We have removed the superscript designation S from ωSk because, from now on, ωk will generally refer to
the state of the system and so the specification S is implied. All we have really done is to explicitly write
out a formula for the constant of proportionality in eq. (5). Here we should note that Z can be changed by
changing any one of the Ek that exist, or by changing β = 1/τ . In a sense, therefore, Z can be viewed as
Z(τ, {Ei}), a function of τ and of the set of all Ei, denoted by {Ei}.

Now, we will define a new free energy function F as

F ≡ −τ log(Z). (9)

As was stated above, because Z can be viewed as a function of τ and {Ei}, likewise so can F . It turns out
that this definition of F has relevance to our earlier concept of free energy. It is your job to find out why:

Questions

1. Using the explicit expression for p(ωk) = exp(−βEk)/Z mentioned above, show that

σSys = −β2 ∂

∂β
F = − ∂

∂τ
F =

∂

∂τ
τ log(Z)

are all equivalent descriptions of the entropy of the system (this is the entropy of the question “what
is the state of the system” if the energy takes on a statistical distribution of values).

2. If we denote the average observed value of energy E as 〈E〉 (More generally, for any quantity x that
can be observed, we denote the average value that you expect to observe by 〈x〉), show that

〈E〉 = − ∂

∂β
log(Z).

3. Show that
F = 〈E〉 − τσSys. (10)

Two suggested ways to do this are to use the derivative relations above, or to explicitly work with the
definitions in terms of p(ωk) to get the desired result.

With the result that F = 〈E〉−τσSys, it is clear that our new definition of free energy bears some resemblance
to the old definition. Where before F(E) = E − τσSys(E) did not tell us directly about the average energy,
our new function F does. Our old definition also depended on the entropy of the state of the system at fixed
energy, while the new F is related to the entropy of the state of the system as a whole. It turns out that this
new form of F is more useful, as we will see. From now on, you should assume that all further references to
F refer to this new definition of free energy in eq. (9) and eq. (10).

Relations between changes in average energy and entropy We will now try to determine how
changes in average values of observables, such as 〈E〉, are related to changes in σSys. Before we begin, we
must clarify what we mean by changes. The values 〈E〉, σSys, and F can all be thought of as functions
of τ and {Ei}, in the sense that they have explicit formulas in terms of these variables. We can therefore
explicitly compute their partial derivatives with respect to changes in τ or changes in some Ei. From these
partial derivatives, we can find laws between how 〈E〉 changes and how σSys changes that are always true
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regardless of the mechanism which produces that change (whether it is changing τ or changing some Ei).
With this method, we will be able to show that

δ〈E〉 = τδσSys + δWExt. on Sys (11)

where WExt. on Sys refers to the external work done on the system. Again, the notation δx means a small
change in quantity x, and the statement above means that no matter how these small changes are produced,
the relation in eq. (11) holds true. This equation is a more precise statement in terms of well defined variables
than the vague assertion that we previously made called the first law of thermodynamics that δE = τδσ−pδV
(note that −pδV is analogous to WExt. on Sys). We will use this relation to define the energy extractable
from a system and to analyze applications of statistical mechanics in the real world.

Questions We will now proceed with the derivation of eq. (11). We need to consider all possible ways of
changing 〈E〉 and σSys and show that, in all cases, eq. (11) holds. The most general variation in all of our
functions is caused by changes in τ and in various Ei. While it is possible to explicitly compute the partial
derivatives of 〈E〉 and σSys with respect to all of these variables and use these partial derivatives to prove
eq. (11), instead we can take the following shortcut: partial differentiate F with respect to τ and show that
the result implies that

∂〈E〉
∂τ

= τ
∂σSys

∂τ
.

You will find it helpful to recall that we know an expression for σSys in terms of ∂F/∂τ . Now partial
differentiate F with respect to Ei for some integer i using the explicit formula F = −τ log(Z), all while
holding τ fixed. When you have found your result, equate it to the formula for ∂F/∂Ei in terms of 〈E〉 and
σSys to obtain

∂〈E〉
∂Ei

= τ
∂σSys

∂Ei
+ p(ωi).

From the two main equations derived above, we can conclude that

δ〈E〉 = τδσSys +
∑
ωi

p(ωi)δEi. (12)

Please explain in your own words why we can conclude this (this is essentially a result from calculus con-
cerning infinitesimal quantities).

Defining external work Yet, we are not done; in order for eq. (12) to match eq. (11) above, we must
identify

∑
ωi
p(ωi)δEi as an infinitesimal amount of work that has been done on the system, or δWExt. on Sys.

To see why this is a reasonable definition, think about how we might produce a change in some value of
Ei. In particular, energy levels change because you do something to the system. There might be an external
parameter that an observer can control, like a lever, to alter energy levels. Call the value of this parameter
x. In this case, as you change x, δEj = (∂Ej/∂x)δx for all j, and∑

ωi

p(ωi)δEi =
∑
ωi

p(ωi)
∂Ei
∂x

δx =

〈
∂E

∂x

〉
δx =

〈
∂E

∂x
δx

〉
. (13)

Note that it is not always true that 〈∂E/∂x〉 is the same as ∂〈E〉/∂x. Instead, 〈∂E/∂x〉 stands for precisely
what is shown in the above equation. This is a crucial and subtle point. These quantities are not always
equal because p(ωi) actually depends on Ei and therefore on x. For now, just keep this distinction in mind.

Why is it reasonable to interpret this as the work done on a system? Well, if the system were exclusively
in state Ek, then (∂Ek/∂x)δx would be precisely the infinitesimal amount of work that was done on the
system. We are not in any one state of the system, however, so the external work done on the system is only
something we can talk about as a statistical average. This is why we must average the quantity inside the
〈·〉 brackets to get δWExt. on Sys.

8

8The more accurate picture is that the system switches between all ωi rapidly, and spends an amount of time in each state
ωi that is proportional to p(ωi). Therefore, as the external parameter x is changed slowly, the work that is done on the system
is the sum of the work done during each interval that the system spends in each state. This sum is precisely given by eq.
(13). This interpretation of what physically happens in the system is explained further in Section 4.0.1 on non-equilibrium and
equilibrium changes to a system.
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Thus we have found the average external work done on the system if we change a single parameter x
by an amount δx. However, the total external work done on the system will come from multiple external
parameters {xk} changing, where k ranges over some indices. In this case, the most general expression for
the total external work done on the system by all of the infinitesimal changes {δxk} is

δWExt. on Sys ≡
∑
k

〈
∂E

∂xk

〉
δxk =

∑
k

∑
ωi

p(ωi)
∂Ei
∂xk

δxk (14)

3.1.2 Defining energy that is extractable from a system in terms of free energy

We have thus shown that eq. (11) is true (when we define external work correctly), and we have precisely
defined all variables that appear in the equation. The next step is to try to construct a useful definition of
the energy that can be extracted from a system and used. Because F = 〈E〉 − τσSys,

δF = δ〈E〉 − σSysδτ − τδσSys

by the simple product rule of differentiation. If we then substitute our derived expression for δ〈E〉, we obtain

δF = −σSysδτ + δWExt. on Sys. (15)

This equation implies that changes in σSys alone for a fixed temperature do not alter F , while changes in τ
and external work do modify F . How does this help us define work extractable or energy extractable from
the system? Well, if we hold temperature τ constant, changes in F are precisely equivalent to work done
on the system, which is the negative of work done by the system (this is Newton’s third law in action).
Therefore, if an external actor brings F down by some amount ∆F , then the system has done precisely ∆F
worth of work on the external actor.

Another argument that might convince you that free energy represents the extractable energy is the
following: consider some external work applied to the system at constant temperature τ to change F from
〈E〉1−τσSys,1 to 〈E〉2−τσSys,2. If you were to now somehow use external parameters xk to alter the system’s
entropy σSys,2 back to its original value σSys,1 without doing any external work on the system, then F would
be unchanged from its final value, F2 (this follows from eq. (15)). However, the system would have a new
value of average energy, 〈E〉∗2, instead of 〈E〉2. Therefore F2−F1 = 〈E〉∗2−〈E〉1 is an effective change in the
average internal energy of the system if entropy is unchanged. It might make intuitive sense to interpret this
difference in average internal energy as a difference in extractable work because it is the increase in average
energy between comparable systems with the same entropy ; it might only make sense to compare the work
extractable from a system if they have the same entropy.

In any case, we can now see that the average change in energy extractable from a system at constant
temperature is ∆F .

3.2 A system coupled to an arbitrary reservoir

This section is meant to extend the analysis of the energy extractable from a system and free energy
for systems coupled to arbitrary baths which depend on other variables, such as volume or particle number.
This section does not contain questions for the reader directly and can be skipped or skimmed. Readers
may prefer to refer to the summary at the end of this section and only reference the derivations within if
necessary. However, a more unified understanding of the framework behind free energy can be beneficial in
terms of a deeper understanding of related concepts.

Motivation for devising a generalized framework Most fields of physics such as kinematics are taught
by introducing a few specific examples and slowly building a physical model or explanation that addresses
these examples. For example, in kinematics, the problem of describing a rotating rod leads to the equation
F = ma and subsequently to a theory of angular momentum. In this process, it is important to not lose
sight of the goal of a generalized understanding; if a kinematics class only taught you how to solve the two
examples of a thrown ball and a rotating rod it would clearly miss the point that these examples tell us much
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more about the physical world through generalization. Thus, in our analysis of statistical mechanics, we do
not seek to only answer the question “how can we solve problems X, Y, and Z?” Instead, we seek to answer
“what does knowing how to solve problems X, Y, and Z tell us about an entire class of problems describing
the physical world?” An explicit generalized framework for statistical mechanical systems will help us more
clearly answer this question about a class of problems.

3.2.1 A more general model of a system

What is the most general system coupled to a reservoir that we can still apply a variant of the above
reasoning to? In general, we can divide the external parameters that describe the system into two categories.
The fundamental distinction between these categories is that sometimes variables describing the system, such
as energy E or volume V are fixed, and sometimes they are statistically distributed. You must examine a
system and determine what variable is in each category.

If we denote the set of statistically distributed variables by {λk} and the set of fixed external parameters
by {νj}, then the combined set of λs and νs describes all of the properties of the system. The properties of
the system which can be directly altered by an observer, however, are only the νs. In contrast, the λs are
statistically distributed and cannot be altered directly. However, the observer can also do something else
to affect the system indirectly: alter the bath or reservoir. A few parameters describing the bath are the
quantities αk corresponding to each k and λk. We define

αk ≡
∂σRes({λj})

∂λk

where the notation σRes({λj}) means that the reservoir jointly depends on the values of all λj . For example,
if λ0 = E, then α0 = 1/τ , the inverse temperature. Alternatively, if λ1 = V , then α1 = ρ/τ , the pressure
divided by the temperature (the factor of temperature is not conceptually important right now). The set
{αk} and the set {νj} comprise the set of external parameters that can be used to alter the system, both
directly and indirectly.

How do we go about determining the state of the system? Well, by definition, we simply set the values
of {αk} and {νj}. However, the variables {λk} are statistically distributed, and we must figure out what
this distribution looks like. For these variables {λk} such as λ0 = E, you are left with only one assumption
to fall back on: that the total combined value of each λk for the system and the reservoir is constant. One
further assumption that we need to make is that the value of αk (defined as a derivative of entropy) is a
property of the reservoir that is more or less constant independent of the value of λk in the system. Once
again, this more or less requires that the reservoir has very large values of each λk. If these properties are
satisfied, we can apply the analysis of the previous sections.

First, we must establish one key piece of notation. The system can have various states ωs. Each state
ωs will have a certain value of λk. For each λk, we denote this specific value by λk(ωs). Thus if a particular
state ω2 had λ0 = 5.1 and λ1 = 2.7, then we would write λ0(ω2) = 5.1 and λ1(ω2) = 2.7. Note that generally
each λk can have different values independent of the other λj , so that the set of all ωs will usually consist of
all possible combinations of explicit values of each λk.

With this notation, we can proceed with a similar analysis to previous sections. We consider the number
of possible combined states of the system and reservoir depending on each value of λk(ωs) and differentiate
the entropy of the bath with respect to each λk. With this process, we can show that the probability

p(ωs) =
1

Z
exp

(
−
∑
k

αkλk(ωs)

)
. (16)

Again, we define a partition function Z as

Z =
∑
ωs

exp

(
−
∑
k

αkλk(ωs)

)
. (17)

This formula immediately lets us see that

〈λk〉 = − ∂

∂αk
log(Z ). (18)
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Here we pause and note that, by assumption, the only variables that change in this formula are {αk} and
{νj} (changes in {νj} act implicitly but not explicitly because each νj affects all of the λk(ωs) individually).
Therefore we can treat Z and any function derived from it as a function of {αk} and {νj}.

3.2.2 A “generalized free energy function” and its uses

As has been demonstrated above, we can more easily derive general formulas if we treat all of the variables
λk including energy on equal footing. For this reason, when we define something similar to a “free energy”
in its definition and in its uses, we will not privilege it by giving it the units of temperature. To that end,
we define a “generalized free energy function”9 G by

G ≡ − log(Z ).

We can then use the formula for entropy in terms of p(ωs) to derive that

σSys = −
∑
ωs

p(ωs) log(p(ωs)) = −
∑
ωs

p(ωs)

(
−
∑
k

αkλk(ωs)− log(Z )

)
=
∑
k

αk〈λk〉 + log(Z ). (19)

This directly implies that

G =
∑
k

αk〈λk〉 − σSys. (20)

From the above equation, the parallels between G and free energy as defined before are notable (just let
α0 = β = 1/τ).

Changing various αk: As before, we are still interested in how 〈λk〉 change relative to each other and
to entropy. Again, we can compute ∂G/∂αk using the definition of G in terms of the partition function in
eq. (17). Eq. (18) directly implies that this is 〈λk〉. We can set this value equal to ∂G/∂αk in terms of the
{〈λk〉} and σSys from eq. (20). The end result, with some cancellation and redistributing, is

∂σSys

∂αk
=
∑
m

αm
∂〈λm〉
∂αk

or
δσSys =

∑
m

αmδ〈λm〉

as long as only the various αk are varied, not the νj .

Changing various νj: Now we consider the only possible other change of the system, which is to change
some νj . By definition, changing νj acts on the system by producing changes in each λk(ωs), meaning in the
value of λk for each state. These changes are given by δλk(ωs) = (∂λk(ωs)/∂νj)δνj . Although we did not
write it explicitly, λk(ωs) is really a function λk(ωs, {νj}) of the state and the external variables νj . Once
again, we consider changes in G . In particular, we consider changes when we alter the value λk(ωs) for a
specific value of k and specific value of s. We find ∂G/∂λk(ωs) using both the explicit formula and eq. (20),
and we obtain

∂σSys

∂λk(ωs)
=
∑
m

αm
∂〈λm〉
∂λk(ωs)

+
∂

∂λk(ωs)
log(Z ),

as well as
∂

∂λk(ωs)
log(Z ) = −αkp(ωs).

9This terminology is by no means standard, and that is why it is in quotations.
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This follows from differentiating Z explicitly. Putting this all together, as we change a specific νj , everything
changes by the following formula∑

k

∑
ωs

∂σSys

∂λk(ωs)

∂λk(ωs)

∂νj
δνj =

∑
m

αm
∑
k

∑
ωs

∂〈λm〉
∂λk(ωs)

∂λk(ωs)

∂νj
δνj −

∑
k

αk
∑
ωs

p(ωs)
∂λk(ωs)

∂νj
δνj .

If we jointly consider all νj changing at the same time, as well as any changes in αk, we can write the full
expression for changes as

δσSys =
∑
m

αmδ〈λm〉 −
∑
j

∑
k

αk

〈
∂λk
∂νj

〉
δνj . (21)

The immediate consequence of the above formula for G is that

δG =
∑
m

〈λm〉δαm +
∑
j

∑
k

αk

〈
∂λk
∂νj

〉
δνj . (22)

These formulas generally hold for the functions as defined as long as they obey the stated probability
distribution in eq. (16), regardless of their physical interpretation. However, our next step will be to produce
a physical interpretation.

3.2.3 A physical interpretation

We want to consider specifically changes in 〈E〉. For this purpose, suppose that λ0 = E and α0 = β = 1/τ ,
and relabel sums over λk to not include k = 0. In this case, if we define G ≡ τG , then the three resulting
important equations that can be quickly derived are

G = 〈E〉+
∑
k

ταk〈λk〉 − τσSys. (23)

τδσSys = δ〈E〉+
∑
m

ταmδ〈λm〉 −
∑
j

(〈
∂E

∂νj

〉
+
∑
k

ταk

〈
∂λk
∂νj

〉)
δνj (24)

δG = −σSysδτ +
∑
m

〈λm〉δ(ταm) +
∑
j

(〈
∂E

∂νj

〉
+
∑
k

ταk

〈
∂λk
∂νj

〉)
δνj (25)

The final term in the above equation is precisely the generalized definition of external work done on a system:

δWExt. on Sys ≡
∑
j

(〈
∂E

∂νj

〉
+
∑
k

ταk

〈
∂λk
∂νj

〉)
δνj . (26)

A valid definition of external work Why is this a valid definition of external work? The first term with
∂E/∂νj clearly resembles the external work mentioned before, and so is intuitively valid. As an example of
why the second term can be interpreted as work, note that if λj is volume V , then ταj is pressure ρ, and
the final term becomes effectively the average ρδV that occurs as external parameters are altered, precisely
what we would interpret as external work done on a system.

Why did we not use 〈E〉 to define external work? You might still be troubled thatwe didn’t use
〈E〉 instead of G to measure external work done on the system. Why is this valid? Well, from eq. (24), 〈E〉
changes with the entropy of the system and with ταmδ〈λm〉, as well as with external work. Therefore, if we
did some external work on the system, it could cause a change in the entropy of the system or ταmδ〈λm〉
and not change 〈E〉 at all. Therefore, 〈E〉 would not measure the work done on the system.
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Here is an explicit, simplified example. Consider a system with two possible states, ωa and ωb. Assume
each state only has one descriptive variable, the energy. Moreover, assume the initial energy is E = 0 for
both states (Ea = Eb = 0). In this case, Ginitial = −τ log(2) because σSys = log(2). Moreover, 〈E〉initial = 0,
clearly. Next, change some external parameter ν so that the energy Eb of state ωb slowly goes to infinity.
Clearly, you are doing work on the system to raise the energy of this state, and in fact we have an explicit
formula for this work. In the end, however, 〈E〉final = 0 still because the exponential factor in the probability
of being in state ωb dominates the effect of Eb being large. Thus, ∆〈E〉 does not reflect the fact that we did
external work on the system. However, Gfinal = 0 because the entropy of the system goes to 0. Therefore,
∆G = τ log(2) > 0 reflects the work that we had to do on the system to affect this change in state ωb, while
∆〈E〉 = 0 does not.

Summary In one summary sentence: external work done on the system can be stored as 〈E〉, σSys, or a
whole host of other variables, and so we must consider all of these variables if we are trying to keep track of
the total work done on the system. The generalized free energy G is the function that does this accounting
for us.

3.3 Summary of generalized analysis of free energy and work done on a system

We have shown that, when there is an arbitrary set of variables λk that describe the system and are not
controlled but instead have a statistical distribution, and an arbitrary set of variables νj that describe the
system which are fixed and can be used to control the system, then

1. We can always define a generalized free energy function G as G = −τ log(Z ), where Z is the full
partition function of the system.10

2. This generalized free energy function G has the property that ∆G measures the external work done on
the system by changing any of the νj variables, if we also assume

(a) that the system’s parameters are changed slowly enough to remain at the equilibrium probability
distribution,

(b) and that each ∂σRes/∂λk remains constant for all k (effectively constant temperature, pressure,
etc.).

Therefore, in general G is a valid measure of the energy that can be extracted from the system using
variables νj if we have no control over any λk. The precise definition of the most general form of
external work is given in eq. (26).

3. Moreover, we have shown that G is intimately connected to the full entropy of the system (meaning
the entropy of the full probability distribution of states for the arbitrary system), and contains a factor
〈E〉−τσSys as well as additional terms related to other λk. Work done on the system can be interpreted
as being stored in the entropy of the distribution in some cases.

Overall, we have learned what entropy and free energy are, both in the context of information theory and in
the context of statistical mechanics, and we are ready to examine exciting new applications of these theories.

10Generally textbooks define various types of free energy such as the Hemholtz free energy and Gibbs free energy that are
valid in certain physical situations, but if you think about a concept of generalized free energy as defined here, then it is clear
that Hemholtz and Gibbs free energy are simply individual manifestations of the exact same object.
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4 Applications: non-equilibrium changes in biological and com-
putational systems

The remainder of this document is designed to introduce you to interesting applications of entropy and
free energy in a way that will test your understanding of the theoretical concepts described above. However,
first we must discuss the concept of non-equilibrium changes, which are essentially changes that occur fast
enough so that the system is not described by the equilibrium probability distribution. Generally, these
types of non-equilibrium changes are common in real world systems.

Next, we will discuss two applications of the concepts of free energy, entropy, and work done on a system:
non-equilibrium biological systems and the process of classical computation. Both of these situations benefit
from the fact that we can view small biological systems or computational systems which are immersed in a
bath of constant temperature and pressure as precise manifestations of the abstract systems in our previous
analysis.

4.0.1 An aside on equilibrium distributions and non-equilibrium distributions

Probability distributions of the form p(ωk) = exp(−βEk)/Z which were derived above by considering
changes in the entropy of the reservoir are called the “equilibrium probability distribution”, and the
system generally remains in this type of distribution as long as you change external parameters slowly enough.
A change which maintains the equilibrium probability distribution is called a reversible change. A change
that does not maintain this probability distribution is called irreversible. One important fact is that the
definition of external work done on a system that we found above is only valid if the system remains in the
equilibrium distribution.

To understand non-equilibrium changes, we must first understand what it physically means to be in an
equilibrium of states. More generally, what is the physical meaning of having a probability distribution of
states, rather than a distinct state? In reality, when we talk about a system having a probability distribution,
the system actually is in one of the possible states that are available, and it quickly switches between that
state and nearby states over time, doing so in a way that it spends time in each state that is proportional
to the probability that we say it has of being in that state. Thus, when we say that we have a probability
p(ωi) of observing state ωi, what we really mean is that the system spends about that proportion of its time
in state ωi, so that if we were to look at the system at any random given time, we would have a probability
p(ωi) of observing state ωi.

If you change the external parameters of the system too quickly then the state of the system is now
described by some non-equilibrium probability distribution (any probability distribution that does not
have the form p(ωk) = exp(−βEk)/Z or the generalized analogous formula that we derived above). How
does this happen? Well, the state of the system is initially some ωi, or near some ωi. When you start
changing external parameters of the system quickly, the actual state of the system doesn’t have time to
change. Therefore, the final state of the system is preferentially more likely to be near the same ωi when
you finish altering the system (although ωi might now have a different value of E or V ). Lastly, this final
distribution might not be an equilibrium distribution.

Why is this final state non-equilibrium? Consider a more concrete example. Imagine you had two states
available, ω0 of energy 0 and ω1 which has very high energy. In equilibrium, the initial state is far more likely
going to be ω0. In fact, we can essentially assume that the initial state of the system is ω0. However, if you
very quickly change the parameters of the system then you are still in state ω0 with very high probability,
even if you cause ω0 to have huge energy, and ω1 to have 0 energy. Thus the actual probability distribution
which has p(ω0) ≈ 1 and p(ω1) ≈ 0 is not the same as what the new equilibrium probability distribution
should be based on the new energies of states ω0 and ω1.

What are the implications for work done on a system if you drive a non-equilibrium change or an
equilibrium change? If the probability distribution is not the equilibrium distribution, then (on average) the
external work done on the system as you change an external parameter will not be described by eq. (14).
Rather, during a non-equilibrium change, the average work done on the system when changing parameter x
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by δx is given by a slightly different formula:

δWnon-equil. =
∑
i

pnon-equil.(ωi)
∂Ei
∂x

δx.

Because the values of pnon-equil.(ωi) are no longer taken from the equilibrium distribution, this value of
external work may be different from the equilibrium external work in eq. (13). Therefore, our analysis above
using changes in free energy G to measure the work done on a system will not be quite right. However, can
this analysis still tell us something about the system? Surprisingly the answer is yes.

It is worth noting, however, that even during a non-equilibrium change of external parameters, the free
energy is still well defined as a function of τ and {Ei}, given by eq. (9). We can therefore still talk about
changes in F or G during non-equilibrium alterations of external parameters, and we will use this fact in
Section 4.1.

4.1 Jarzynski’s equality: a non-equilibrium work relation

In the paper “Nonequilibrium Equality for Free Energy Differences”, C. Jarzynski, Phys. Rev. Lett. 78,
2690 (1997), the author derives a relation between changes in free energy (an equilibrium concept) and the
statistical distribution of work done on a system as you vary external parameters in a way that drives the
system out of equilibrium.

4.1.1 Statement of Jarzynski’s equality

Consider an equilibrium system. Assume you vary some external parameter λ which changes the as-
sociated energies of various possible states of the system. You start with the system in an equilibrium
distribution and you vary λ quickly from a value λi to a value λf , thus potentially driving the system out of
equilibrium. If you repeat this change from λi to λf many times, the work done on the system in the process
will not be the same for every experiment. Why is this? When you change λ quickly, you are basically
sampling the initial distribution of states for the system, picking a specific state to start with, and then
changing that specific state depending on how it is altered by λ. This argument was given in Section 4.0.1.
If you happen to start the system in state ωi, the parameters of the actual state ωi of the system such as
Ei and Vi will take a certain path to their final value and you will perform some specific amount of work on
the system. However, if you start in a different ωj , the work applied over time may be something entirely
different (for example, there may be some possible starting states that are not altered at all by λ). This is
why there is a statistical distribution for the amount of work that you will do on the system as you change
λ quickly. What can we say about this distribution of work, in general?

The result derived by C. Jarzynski, called Jarzynski’s equality, which tells us about the statistical distri-
bution of the observed, actual values of external work done on the system, or WActual, ext. on Sys, is

〈exp(−βWActual, ext. on Sys)〉λi→λf
= exp(−β∆G). (27)

The averaging symbol 〈·〉λi→λf
means averaging · over many repeated experiments starting from an equilib-

rium distribution, where you start with the same initial probability distribution and then change λ in the
same way over time. The function G referenced here is defined to be −τ log(Z) for the partition function Z.
In different physical situations Z will depend on different variables such as temperature, pressure, and the
distribution of energies for each state, and will most generally be given by eq. (17). The exact interpretation
will depend on the context, although the remarkable result is that Jarzynski’s equality holds regardless.
Although this paper’s derivation is interesting from a theoretical standpoint, we do not have the time to
analyze it in detail here. It is provided to you for reference should you choose to look at it. Instead we will
take eq. (27) as true and consider its implications.

Questions First, look up the mathematical concept of Jensen’s inequality, which will allow us to relate
WActual, ext. on Sys directly to ∆F . Explain why Jensen’s equality implies that

〈WActual, ext. on Sys〉λi→λf
≥ ∆F . (28)
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Next, remember that F measures the work that you can extract back out of the system through a reversible
process, and so we can say that ∆F = WReversible, ext. on Sys, or the reversible external work done on a
system. Thus we can define something called dissipated work,

WDis =WActual, ext. on Sys −WReversible, ext. on Sys.

With this definition, eq. (28) implies that

〈WDis〉λi→λf
≥ 0 and 〈exp(−βWDis)〉λi→λf

= 1 (29)

Try to explain why the result quoted above makes intuitive sense based on your real world experience, both
for the case of positive external work and negative external work. Your explanation does not need to be
mathematically rigorous; we just want to see how you interpret the above result in terms of the real world.

4.1.2 Experimental test of Jarzynski’s equality

Equation (28) roughly states that energy is dissipated on average during non-equilibrium changes. Not
surprisingly, this fact was known empirically for a long time before the more precise eq. (27) was stated
by Jarzynski. Naturally, when eq. (27) was theoretically proposed, it became necessary to test its implica-
tions experimentally to ensure that its predictions did not conflict with experiment. We will consider one
paper which explores Jarzynski’s equality experimentally: “Equilibrium Information from Nonequilibrium
Measurements in an Experimental Test of Jarzynski’s Equality”, J. Liphardt et al., Science 296, 5574 (2002).

Questions Here you are asked to read the above paper by J. Liphardt et al. and answer a few key
questions about its results. We suggest that you skim the paper once, focusing on general concepts and on
understanding the data in the various figures, but moving on if a concept takes too much of your time to
understand, or if it just seems downright unrelated to anything we’ve talked about in this document (we
won’t ask you questions about every detail of the paper). After this initial reading, you should try to answer
specific questions posed below by rereading specific sections of the paper in depth.

Please answer the following questions which roughly follow the chronological order of the paper. The
questions generally do not focus on minute details that require an understanding of biology, and neither
should your answers. Focus on interpreting results in terms of concepts introduced in this document.

1. Describe in your own words the experimental setup. What are the physical parts involved?

2. What can you consider to be the reservoir for this system?

3. How do the experimenters measure work done on the system?

4. How do the experimenters measure the actual change in free energy, ∆G, between the initial and final
states? (Note that this paper uses the Gibbs Free energy in Jarzynski’s equality, which is valid because
their physical system is coupled to a bath of constant temperature and pressure.) As you have probably
realized, computing G = −τ log(Z) from the probability distribution would be nearly impossible in all
but the simplest situations. Hint: read through page 2 of the paper if you cannot figure this out and
look for the symbol ∆G.

5. How do the experimenters test Jarzynski’s equality? Remember that the experimenters have one objec-
tive measure of ∆G using the method you found above. Jarzynski’s equality also provides an estimate
of ∆G by averaging something (what is it?) over multiple experiments. What do the experimenters do
with these two, potentially different values for ∆G that they obtain?

6. What is different about the experiments in Fig. 2(a) that generate the red curves from the experiments
that generate the blue curves? Explain why in Fig. 2(a) the two blue curves lie almost on top of each
other everywhere while the two red curves do not.

7. Consider Fig. 3(a). What is being plotted? You should refer to the caption. Why does the estimate of
∆G from Jarzynski’s equality underestimate the actual value of ∆G? You may find it helpful to reread
the bottom two paragraphs of the left column of the page containing Fig. 3.
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8. Consider Fig. 3(b). What is the main difference between this data and the data from Fig. 3(a)? Focus
on the dashed lines and solid lines. What does it mean that the solid lines are higher than 0 on the
graph? What does it mean that the dashed lines are approximately 0 for any extension length? This
result is, more or less, the most important result of the paper.

9. Consider Fig. 3(c), Fig. 3(d), and Fig. 3(e). What is plotted is the probability of obtaining certain
values of dissipated work, or actual work observed on the system minus the change in free energy. Fig.
3(c) shows the probability distribution after you have extended from 0 nm to 5 nm, while (d) shows
the probability distribution after extension from 0 nm to 15 nm, and (e) after extension from 0 nm to
25 nm. The blue, green, and red data sets represent probability distributions for different switching
rates (speeds at which the system is altered). Blue corresponds to the blue lines in Fig. 3(a), and red
and green correspond to the red and green data in Fig. 3(b).

Is the switching rate for the blue data set faster or slower than the switching rate for the red data set?
Can you explain why it makes sense that the average dissipated work in the blue data set is centered
around 0?

Focus on the red data set in Fig. 3(e). This is a probability distribution with a relatively large spread
and an average that is positive. From Jarzynski’s equality, we showed that eq. (29), or

〈exp(−βWDis)〉λi→λf
= 1

should hold true. Why is it that a distribution like the red distribution with a positive average but
large spread can still satisfy this equation? To answer this, you might want to consider which data
points are weighted more in computing this average than others. You do not have to be mathematically
rigorous.

After answering these questions, you hopefully understand what experiment was performed in this paper and
how the data can be interpreted to be a valid test of Jarzynski’s equality. The end result of this paper is that
Jarzynski’s equality is confirmed within experimental error. We can therefore accurately predict changes in
the equilibrium free energy of a system (which is also the work we can possibly reliably extract from the
system) by performing multiple, fast, non-equilibrium experiments and averaging these results according to
Jarzynski’s equality.

Thus, in a broader sense, we have learned that highly abstract mathematical frameworks can actually
be useful for predicting concrete results in physical systems in the world around us. Moreover, these results
hold for systems under very few idealizing assumptions. Indeed, the system does not need to be infinitely
small, the bath does not need to be infinitely large, and we don’t have to change the parameters of the
system infinitely slowly.

4.2 Dissipation in computational systems

Perhaps surprisingly, the theoretical results derived earlier in this paper also allow us to explore the
thermodynamic limits of computation. In effect, we want to analyze how much energy we dissipate as we
perform a computation on a computer, if any. In order to analyze this situation, we must first define a
theoretical model of a computing system, meaning define what its logical components are, and we must
specify how the computer fits into the framework of a system and reservoir that is used throughout this
paper. We can then consider how its free energy changes as a computation is performed, and consider how
much energy is dissipated.

4.2.1 Reversible or irreversible computation?

As has been discussed above, when a system’s state changes reversibly, the least amount of energy is
dissipated (on average) that is possible. However, you often want a system to compute something quickly, in
which case you want to drive the system to change quickly, and this can push the system out of equilibrium,
leading to more dissipated energy on average.

While the question “how much energy am I willing to dissipate just to have a faster computation?” is
an important question, we will not concern ourselves with it here. Rather, we will try to determine limits
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on the energy dissipated during a computation which is performed slowly enough so that the system always
remains close to the equilibrium probability distribution.

4.2.2 The AND gate as a logical operation

Rather than analyze an entire computer as a system all at once, we will analyze its smallest components.
One of the simplest digital computing functions is to take two bits, which are units of information that can
be either 0 (false) or 1 (true), and perform the AND operation. This operation outputs 1 only if both inputs
are 1, and outputs 0 otherwise. Thus, (0, 1)→ (0), (1, 0)→ (0), (0, 0)→ (0), and (1, 1)→ (1).

It turns out that most modern computers can be built entirely from AND gates and a few other funda-
mental building blocks, such as OR gates and NOT gates (which do exactly what they sound like they might
do. Feel free to look them up). However, because the AND gate is widely used, we will focus on the AND
gate in the discussion below, and leave it to the reader’s imagination to generalize these concepts further.

4.2.3 A physical model

We can imagine an AND gate as a little machine that takes two logical inputs and produces one logical
output. There are many different ways to implement this machine in the physical world, just as there are
many ways to represent 1 and 0, and so it becomes difficult to say something generally meaningful about
the energy costs of an AND gate. However, we can say something meaningful if we translate the concept of
the AND gate into the language of a system coupled to a reservoir with a statistical distribution of energies.

Our conceptual model is this: imagine a system with two “ports”, port A and port B. These ports can
each take on the value 0 or 1. To compute the logical operation of an AND gate on two bits, you load the
input bits into port A and port B. Next, the computation is applied to the two bits, and then the answer is
displayed on port A, leaving the other port B to randomly be either 0 or 1.

How do we compare this to a system and reservoir model? We consider the two bits to be the system
which is coupled to an energy reservoir, a computer agent, and a human agent. This system has 4 possible
states, corresponding to (0, 0), (1, 1), (1, 0), and (0, 1). There are two external actors which interact with
the system: the human agent that sets the initial values of the gates, and the computational agent which
changes the initial state of the system to the final state of the system according to the logical rules of the
AND gate. The initializer agent sets the initial values, steps back, and lets the computer interact with the
system to put it into its final state, which can then be observed. While there may be other ways of conceiving
of a computer, the physical results below are best understood with this model.

4.2.4 Operation of the AND gate from the perspective of statistical mechanics

This section goes through the sequence of steps that a computation consists of, and determines the value
of various statistical mechanical quantities during each step. Ultimately, this allows us to derive the amount
of energy dissipated when performing a single computation.

Questions Assume that the system has exactly 4 possible states for port A and B: (0,0), (0,1), (1,0), and
(1,1). We will call these states ω1, ω2, ω3, and ω4 respectively. We imagine that all of these states have some
energy Ei, and that the states are populated as usual in an equilibrium probability distribution, according
to the factor exp(−βEi)/Z. Imagine that all of these states start out with the same energy Ei = ε. This
results in an initial value of the free energy which we will call FBefore init. = 〈E〉− τσSys. What is this value?

Next, as the external agent who initializes the ports, we choose to load a certain starting state into the
computer. For example, to load ω2 = (0, 1), we raise all Ei with i 6= 2 to Ei ∼ ∞. If we do this, what is
the resulting value of 〈E〉? Hint: the limit as x → ∞ of xe−x is 0. What is the resulting value of σSys?
Therefore, what is the resulting value of F? Call this value FBefore comp.. How much work did we have to
do to cause this change? To be clear, we as the external agent that initializes the ports are doing this work.

At this point, we step back from the system and we let the computer perform a computation on the
system. This operation is a deterministic map from initial to final configurations of the system according to
the logical operation of an AND gate. For example, because we are considering an AND gate, if we were
in ω2 = (0, 1) initially, the final state has port A = 0 and port B undetermined. Therefore, the final state
is either ω1 = (0, 0) or ω2(0, 1), with equal probability. The computer is considered as an external agent
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distinct from the system, so from the perspective of the system, the computer does work on the system and
changes Ei in some way, just as was done by the human agent during the initialization process. In this
interpretation, the computer must have brought E1 down from E1 ∼ ∞ to E1 = ε, so that ω1 and ω2 were
equally likely, while ω0 and ω3 are impossible. When changing this energy, the computer did work on the
system. Was this positive or negative work? You can find out by computing the change in free energy. Call
the new free energy after this change FAfter comp..

Once we have computed these various free energy changes, we need only keep track of where work is done
and where energy is dissipated during the process of computation. The next section will discuss this process
in more detail.

4.2.5 Where is energy dissipated?

During the procedure of computation, we do work on the system to start it in one of the computational
basis states. We step back, and then the computer steps in and exchanges energy with the system. The system
is then in its final state. The work we do to initialize the system is FBefore comp. − FBefore init. = τ log(4) =
2τ log(2). The work that the computer does when it exchanges energy with the system is FAfter comp. −
FBefore comp. = −τ log(2). Note that this work done by the computer on the system is negative so that the
computer extracts energy from the system. Lastly, if we wanted to reinitialize the system into a different
ωi after finishing a computation, it is not hard to show that we would have to do an additional amount of
work given by FBefore comp.−FAfter comp. = τ log(2). From this we see that, in the course of one computation
where the system goes from FAfter comp. to FBefore comp. to FAfter comp., we put in τ log(2) worth of energy
to the system, and then the computer takes out τ log(2) worth of energy. It is not clear exactly where this
energy goes after the computer extracts it, but the point is that we as the initializers no longer control
the energy, and we no longer can get it back out of the system directly.11 This loss of energy means that
computations with an AND gate costs us as the human initializer τ log(2) worth of energy on average per
computational cycle.

Questions It is common to look at the above energy cost of computation and call it “irreversible com-
putation” because of the energy cost associated. Why is this potentially a misnomer? Is the energy really
dissipated, or is it just stored in a different system (like the computer)? Remember that we are still assuming
that we are operating slowly enough so that the system remains in equilibrium with the reservoir at all times.

It is important to realize that the computer itself is a system coupled to a reservoir. In real physical
computers, the energy τ log(2) is extracted during a computation and resides in the core of the computer.
The physical assumption is then that the energy extracted into the computer is eventually dissipated as heat
loss, and is therefore well and truly irrecoverable.

4.2.6 Generalizing the computational model

It may have occurred to you that having only 4 states (not 4 logic states but 4 states total) available for
the system isn’t realistic.

Question Consider if, instead of 4 states, there were 40 states of the system possible, all with the same
initial energy. Further assume that 10 of these states correspond to each of the 4 combinations of port A
and port B. In this case, we can still perform computation by changing the energy of each set of 10 states
at once. Argue why this does not change the essential conclusion that the energy cost of one sequence of
computation is τ log(2). You will have to consider the same set of steps that we used above to originally
derive the τ log(2) loss of energy per computation.

Additional information for your own interest This analysis can be extended further using the concept
of relative entropy to show that δσSys = δσLogic gates (meaning that the entropy of the whole system changes

11Perhaps there is a conceivable way of getting the energy back out of the computer, but we will not consider that here.
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with the entropy of the logical output of the system) as long as a few small constraints on the system’s
energies are made.12

4.2.7 Computing without the cost

In the case described above, although we described the process of computation through changing the
energies of the various states, Ei, note that the average energy of the system, 〈E〉, never changed. Therefore,
the change in free energy is −τσSys which is quite literally the energy available to be extracted from the
system. Once again, the entropy of the system seems to be physically relevant.

This observation suggest that, if we can design a computer that does not change the entropy of the
system as it changes the input state of the system to the output state, we can perform computations without
the associated energy cost. If the free energy does not change, then the average work we, or the computer,
performed on the system was 0.

Questions Consider the case where the mapping of the computer between initial and final logic gates is 1
to 1. That is, consider a logical operation that is not the AND gate. This means that for every input logic
state there is exactly one possible output logic state, and the reverse. Two examples of such gates for two
bit operations are the NOT gate and the identity gate. You can also look up a gate called to Toffoli gate for
another example, although this gate uses more computational bits.

If the computer is programmed to carry out this type of gate operation, what will be the change in the
entropy of the system from before the computation to after the computation? Assume that we keep average
energy fixed still, just as before. Does repeatedly performing this operation cost any energy on the part of
the observer? Does the computer extract any energy as it performs its computation? Explain why. These
types of logic gates are often referred to as “reversible” gates because the computation itself, if performed
in near equilibrium, does not extract any energy on average from the system.

Perform a little research into modern computational systems to answer the question “how close to the
thermodynamic limits of computation are modern computers?” In particular, try to find information about
modern physical implementations of the AND gate, and determine the energy dissipated in one logical
operation. Is it close to τ log(2) or is it much larger? You may have to assume a certain temperature of
the system and use the fact that τ = kBT , where kB is Boltzman’s constant and T is the temperature in
Kelvin (really temperature should be measured in units of energy, but historical reasons ensure that it is
not). With these results, can you argue whether classical computing systems are limited by the theoretical
thermodynamic limits of computation, or rather by inherent inefficiencies in the physical implementations
of computing architectures.

12One possible set of constraints is derived by decomposing the entropy of the states into the entropy of the logical output
ports plus the relative entropy of the states given the value of the output ports. The assumptions that must then be made
are assumptions to ensure that the the relative entropy term is constant, so that changes in the full entropy of the system are
precisely changes in the entropy of the logical output ports.
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